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"STAIRCASE" METHOZS OF SENSITIVITY TESTING

1. Summary.

W
[{/]
O

Ir this repor: we are concerned witn z Cla I metnode used for cdetemining,

o

or: the basis of a numper of trials; tne level of severitiy alt which a {ixed per-
centage of samples cf & particular explcsive will explede. A general discussion of
the problems of sensitivity tesiing is givern in 8ections 2, 3, and s. The methods
considered can be trosdly defined as follows:

A "stalrease” method ia gany method where the

ay

severity of the next trial or group of trigls
1s directly determined by the results of the
last trisl or group of trlals.
Beyord the fact that all the methods considered in this repcrt are "staircase", we
may further classify them as:
(1). Methods which have not bteen used before, such as the Single Explosion
plus m Trials Methods, the Cascade Methods and the Sequential Method.
(i1). Methods which have been used before, but for which an adequate analysis
has not been available, such as the Naval Powder Factcry and the Plca-
tinny Methods.
(1i1). Methods which have been used before with an adequate analysis, such as
the Up and Down Method.*
In general, these methods (with the exception of the Up and Down) require a vary-
ing number of trials. Consequently they can best be applied when
(1). trials are to be made one after snother,
(11i). the result of a trial is immediately available, and
(11i). changes in severity are easy to make.
The operation of each method on a particular gsensitivity curve can bte sum-

marized by four numbers, rnamely, the percentage point estimated on the average, *he

z -2 + : - Y e . £ - —
variance of the estimated vercentage point, the average ~umter ¢f trials required
1 § 1 - ~ L 4 & A~ T e s £ oot T gt e e : R - Tt
* "Statisticel Anazlysis for z New Prccecire irn Sensitivity (LCETLmenlLs T, LY rrinue-
ton University Statisticsl: Researcnh Grouz. Rezert Lo, "2 0AR of the Arpzited

Mathematics Farel, NIRRT, July, '16=%,
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for cne determination of ths percerntzge point arnd the sverage rusher of explosions

Y - s c P e S A e LY T 23 I o - -3 - N
the=ze quantitles have been compuled numerically, aesuming that the relationenlt

between the revel oI =everity and tne per

tional Part.

Uncnn the basis »f these computations, we have glven in Section ¢ a list of

seven recommended methocds, ezsch method being accompanied by an orerating procedure

and an appropriate aralysis of results. These recommencdecd methods, taken singly or

in groups, can be used to estimate the 10 per cent, 50 per cent or S0 per cent points

Thus we can choose a method to estimate the 10 per

cent point which has one of the following four properties:

with certain minimum properties.

(1). Uses a minimum number of trials,
(i1). VUses a minumum number of explosions,
(1ii1). Minimizes the assumption of normality, or
{iv). Attempts to minimize both the nuwber of trials and the assumption of

normality (and, therefore, usually minimizes neither).
Complete recommendations are summarized in Table 1.
Section € gives zn estimate of the degree of improvement which one might ex-
pect to cbtain by future research in "staircase" methods while Section 15 points out

certaln obvious directicns In which this research might proceed,



I. GENERAL

2. Introduction.

The term "sensitivity test" is cormonly applied to tests in which an in-
creasing percentage of individuals fail, die or explode as the severity of the
test 1s increased. 1In this report we shall always speak of a sample of explosive
as either expleding or failing to explode when it is subjected to a certain severity
test. Partial explosicns are to be classified ap explesicons or non-explosions ac-
cording to gny fixed rule. However, 1t shculd be understocd that the results apply
equally well to situations where individuals either dile or fail to die when sub-
jected to a certain severity test. In the first instance the severity test is
usualily a weight being dropped from a specified height, while in the second it may
consist of the administration of a gpeciried dose of & drug to an experimentsgl ani-
mal. The problem of designing and analyzing such tests is a statistical one, since
the determination of a percentage by repested tests is a statisticsl one. If the
test 1s properly conducted, the sample tested gives a falr representation of the
explosive being studled, but this dces not mean that the observed fraction of ex-
plosions 1is equal to the true fraction in question. The present report considers
& particular group of experimental designs, determining effectlve and complete
methods of analysis for a selected few and comparing their efficlency on seversal
bases.

The alm of & gensitivity test i1s to provide estimateg of one or more numbers
which describe the way in which the percentage "exploding"” Iincreeses with the level
of severity of the test. The cholce of quantities to be estimated normally in-
volves striking a balance between what 1z desired and what 1s attainable, The
quantities which are freguently desired ar=:

{1). an estimate of the percentage explcding at a fixed severlty, and

(2). an eatimate of the severity a:t which s fixed percentage wi:l expl.oude.
The quantities which are usuelly cbtainatie are:

{1). an estimgte cf :the ccratante which compiete the specificartion ¢f the irn-

¢rease, asg.umling a particulsr, gimpie

re

centage explodin




(11). a&an estimate <f the severity at which a fixed percertage exploce,
agssuring a particuiar, simpile form for the increase of percentage ex-
ploding with severity, and

{1i1). an estimate of the percentage exploding at a fixed severlty, provided
this percertage is sufficiently different from 0 per cent or 100 per
cent.

When an éstimate of the percentage exrloding at a fixed severity 1s requirec,
and when this perccntage is nelther very small nor very large, the testing pro-
blem i3 very simple. It is merely necessary to make an adeguate number of tests
at this fixed level.

When the percentage exploding at the fixed severity is very small or very
large, 1t 1s usually not feaslible tc make enough tests at this severity to obtain
s useful estimate of the percentage, and some other device must be used. All

known methods depend on the assumption of a specific functional reiationshio in-

volving several constants for the increase of percentage exploding with Eeverity,

-- thils dependence 1s 1mportant and there seems to be no way of avoiding it.

When an estimate of the severity at which a filxed percentage will explode is
desired. and when thls percentage 1s neither very small nor very large, the testing
problem can be handled with relative ease., Various methods are avallable, and the
only complications arise from the need of balancing the number of tests for g
given accuracy against the extent of dependence of the estimate on the particular
form assumed for the increase of percentage exploding with severity.

When an estimate of the severity at which a very small or very large percerntage
will explode is required, the probliem is just as difficult, and the answer is just

i tne case of estimating a very small or very large rvercent-

&2 unsatisfactory sz io
age 31 3 fixed =severity, =2 for Lthe same reason.

Fetirasticn of moderate percentage (1. e., nelther very small ror very

Z8t at {1xXed severity.



B. Ususlly unimportant dependence on assumed form.

Estimaticon of severity corresponding to modergte percentage.

C. Important dependence on assumed form.

Eastimation of severlty corresponding to extreme percantage.
Estimation of extreme percentage at fixed severity.

3. Scope of the Present Study.

The methods discussed in this report are intended to estimate the severity at

which a moderate percentage will explode gssuming that severity can be measured on

a scale for which the percentage exploding varies with severity according to a cumu-

lgtive normal distributicon (see Figure 7). We shall use the term levels to denote

equally spaced positions on this scale. This normsl curve could be replaced by
gsome other curve, and may have to be as a result of future research, but there
seems to be no possibility of avoiding some cholce of scale. As the general dis-
cussion above predicts, the dependence of the estimate on the assumption is only
moderats. However, some attention has been pald to the extent to which deviations
from normality affect the various methods.

The term stalrcase method is applied to any method where the severity of the

next trial or group of trigls 1s directly determined by the results of the last
trial or group of trials. Four such staircase methods are described briefly below

83 examples:

The NPF Inverted Design (Naval Powder Factory).

Starting at a level at which almost no explosions are expected, step up
one level after each non-expiosion. When an explosion occurs, step down
one level and start to make a group of three trials. If all three fail
to explode the test 1s concluded. When an explosion occurs, move down
one level and start a new group of three, proceeding according to the
same rules.

One Posgible Cascade Design.

Starting at a level at which almcst no expiosions are expected, step up
one level after each ron-explosion. When an expliosion cccure, step down
3 levels and start agsin. Step up one .evel after each non-expicsion an?

stop the test after the next expiosicrn.

Another Cascade Desion.

J

Starting at s level s* which slmcst no expicelcns sre expected, maxe
grcupe of two trials, stepping 2p one level safter each palr cof snon-
expicslene. When an explzsicn ceoire, step down Ccre Level and atart
agall 1L Falirs. Stop the test afier the rex® explosisn.
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The Up and Down Design.

S*arting at a ievel where about 50 per cent explosiong are expected,
rove down one _eve: after each expicsicn and up one level after each
non-expiceion. Stop the test after an essigned number of trials.

The present report maxes a more or less compiete study of a conslderable
number of staircase methods and presents (in 3ecticn 5) a set of recommended
methods, with detalled directions and methods of anglysis. The recommendations
are based on the extent to which the tests attain accuracy while minimizing

(a}. the number of trials required. cr

(b). the number of explosions regulred, or

(c). the sum of the number of explosions and one-tenth the number of trials.
Some attention has also been paid to simplicity of operation and analysis.

Criteria (b) and (c} above are pertinent in tests where the occurrence of an
explosion is more destructive or time-consuming than the occurrence of a non-
explosion. The factor 1/10 was chosen arbitrarily. In some analyses, it might be
desirable to choocse a different value to achieve a proper balance between explosions
and non-exploslons.

While thls report 1s not an exhaustive study of stalrcase methods, 1t does
outline the possibilities of such methods (as explained 1in Secticn 6).

4. Discussion of Quantitatlve Criteria of Efficiency.
A frequent situation in sensitivity testing 13 the following:

We are prepared to make N trials per test on the average. We desire as good
estimates as possibie.

3ince the number of trials per test varles from test to test in many of the stair-
case methods, the present analysis measures the labor involved by the average number
of trials. The number of trials ususlly depends very markedly or. the interval size
used, and thus the same method, if used once, will give different accuraecies and
different gverage rumbers of trials at different interval sizes. Because of the
relationship between number of trials, accuracy and interval size, the same high
accuracy can often be obtalned with about the same number of trials by:
(1., usirz s very smsll interval size, or
122, using g larger interval size and repeating the sams method two or more

tilzeg zn each sample.



Ir (i1) the estimated percentage point 13 taken as the average of the separate
determinations.

If N trials per sample 1s a definite requirement for each sample (for
example, when the samples require careful advance preparation), and if N is small
({ 25), then the situation requires careful investigation beyond the scope of the
present regport. In all other cases, however, and 1t seems likely thst thls in-

cludes most of the cases of practical importance, it will usually be enough to

characterize ihe eiflclency of the tesat in cbtalining accuracy from few trigls by the

"Accuracy per trial™ which is calculated «s follows:

1
mean square) (average numbei)’
x

error of a of trials
single test per test

Accuracy per trial = (
where the error 1s measured in units of the standard deviation of the (assumed)
normal dlstribution.

When the other criteria apply, there 1s rarely any fixed limitaticn on the

number of trisls and the natural criteria are the

Aczuracy per explosion = 1/ Emean square error of a single test)x

{average number of explosions per testﬂ
and the

Weighted Accuracy = 1/ Buman square error of a single test)x
(average number of explosions per test +

(1/10) average number of triagls per testﬂ

To explain and partly justify these criteria, conzider the case of an agercy
which is willing to make 10C trialis on a specific sample and which has 1o chooge
between

mean sqQuare error = 0.3,

Method A.
average rimber of trials = 10,



(02

mean square error = 0.5,
Method B. i
average number of triais = 5.

If method A ie= used, 100 triels will allow about 10 repetitions, anrnd the mean

square error of the result will be about

If method B is used, 100 trials will allow about 20 repetitions, and the mean

aquare error of the result will be about

22 = 0.025.
The approximate mean square errors are each given by 1/{100 x (accuracy per trial))
Clearly method B is to be preferred.

Suppose now that an agency 1s willing to spend a week testing a sample, and
finds that it can mske 15 trials a day if none are explosions, and only 5 a day if

one is an explosion. Thus one explosion requires the same time as 11 non-explosions.

Then if the agency 1s comparing

mean square error = 0.3

Method A. average number of trials = 10
average number of explosions = 2
with
mean square error = 0.5
Method B. average number of trials = 5
average number of explosions = 1.3

it would be natural to calculate as follows. One test using method A would re-

quire (8 « 2 x 11)/15 = 2 days on the average. In 6 days, there would be atou:

Al = 2 namatitinna nd the nosn sanarna orror wonld ke ohant
S P e I S L s S S PR Vamala n S
8- _ o5
3
One test using methcd B would require (3.7 + '.3 X 11}/15 = 1.2 days on the average.

in £ days, there would ke about 6/1.2 = 5 repetitions, and the mear. sqQuare errsr



would be about

.5
=2 = 9.1,
-

In this instance the two weighted accuracies are identical, both being equal to
1/.9. The agency can use sither method.

Similar considerations would apply concerning accuracy per explosion if the
agency were only interested in the number of exploslons.

5. Recommended Methods.

a. Summsry. Seven methods of sensitivity testing and appropriate methods of
analysis are described here, and the conditions under which their use is desirable
are indicated. The methods presented have been selected on the basis of a number
of considerations, the most important of which are believed to be efficiency, sim-
plicity, and stability. A brief discussion of these is glven.

The choice of a method for actual use wlll depend on the end point which is to
be used ags a measure of sensitiv@ty,'as well as on other considerations. The
methods outlined here permit the use of the 10 per cent, 50 per cent, or 90 per
cent point as end points.

It should te understood that the methods presented are those which appear most
deslrable in the present state of our knowledge. It is possiblé that further in-
vestigation may result in the development of new and better methods.

The recommended methods are as follows:

Method 1 : Naval Powder Factory (NPF).
Method 2 : NPF Inverted

Method : Up and Down - Large Interval size.

£ W

Method : Up and Down - Smali Intervali size.
Method 5 : Single Explosion
Method ¢ : Seqguertial for 10 per cent Point.
Methed - : Sequertlal for 0 per cernt Polnt.
The =z2izusticns in which it 2eems best to uze these various methode are sum -

ilcate the numbers of the zethodse,

9]

marized in Table . The numbers irn tre tagkle in

Detalied descripticre of <he methcds are glven In the succeecding pages.
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TABLE 1.

Recommer.dad Use of Methodsi in terms of

Fercentage Foint(=2) to he Estimated

|
|

Quant ity to 10 per 50 per 90 per 10 and 90 10 and 50 10, 50 and
be Minimized cent point cert point {cent point | per cent per cent G0 per cent

oniy only only points points points
Number
of trials 2 L 1 3, or 3 3

1 and 2
Number of
explosions 5 - - - - -
Dependernce
on normality 6 h 7 6 and 7 4 and 6 L, 6,
and 7
Number of
trials and
dependence
on normality 6 b 7 i and 2 2 and & i, 2,
and &

Method 1 : Naval Powder Factory (NPF)

Method 2 : NPF Inverted

Method 3 : Up and Down - Large Interval Size

Method 4 : Up and Down - Small Interval Size

Method 5 : Singie Explosion

Method 6 : Sequential for 10 per cent Polnt

Method 7 : Sequential for 90 per ceni Point
# Except for Method 3, interval sizes grester than 0.5¢" are not advised. There

e g

1ezat 5 levels between the 10 per cent and 90 per cent pointa

Method 3.

T L T R e, T

T AT e
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b. Efficiency. Most of the methods resemble the NPF methoc by involving a varying
number of trials. This analysis measures the labor invelved by the average number
of trials. The rumbter cf trials usually depends very markedly on the interval size
used, and thus the same method, if used once, will give different accuracies and
different average numbers of trials at different interval sizes. The accuracy per
trial, most naturally measured by the reciprocal of the product ¢f the varlance
and the average number of trisals, is nearly constant over a range of interval size
for many methods. Thus the same high accuracy can often be obtaiped with about the
same number of trials by:

(1). wusing a very small in*zrval size, or

(i1). using a larger interval size and repeating the same method two or more

times on each sample.

In (ii) the estimated percentage point is taken as the average of the separate de-
terminations. .

In some types of sensitivity testing, & trial resulting in an explosion is much
more costly than a trial resulting in a non-explosicn. Eere the natural megsure
of efficiency is the accuracy per explosion, which can be measured by the recipro-
cal of the product of varlance and average number of explosions. Both accuracy
per trial and accuracy per explosion have been used in the seiection of these seven
methods.
c. Simplicity. It is clearly desirable that a method should be simple to use and
easily taught to unskilled or semi-skilled operators. This aspect has been con-
sidered, but it is recognized that such judgments are individual matters.
d. Stability. Sensitivity tests are often used to predict safety properties.
That is, tests under conditlons of ' per cent, & per cent, 10 per cent, 20 per cent,
or 50 per cent expicsiors are interpreted to apply to conditiorns of 9.7 per cen:,

0.01 per cent cr 0.60' rer cent explosione. Suach interpretaticns are aiways de

cate ard ceperd strongly on the way In which per cent exp.celcrns ts assumped 10 vary
with severity of tes: or severity cf handiing. Fresen’ methods cof irntercretaticon
are freguently based cn the aszuzpticn that, whern severity ls measured o5 a suliakie
scaxe, the per cert exryicsicrs -- severlitiy curve \%“he gersitivisy cuirve,. 'z =z 2um.-

iartive normsl curve. In the cz3es3 i Crzpariscnm beiweern Tal I TS eXn.I®lves, tne

..... [ R
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agsumpticn that comparisons at the 10 per cent pelnt are similar te those at the
.01 per cent point 1s equivalent to an assumption that the sensitivity curves are
9imilar,

The curve in Figure ' represents the probability c¢f explosion as a function
of height. The unit of measurement we shall use 1s the standard deviastion (&).
The distance (in the properly chogsen scale) from the 10 per cent roint to the 50
per cent pcint or from the 50 per cent point to the 90 per cent point is 1.28¢
if the curve 1is the cumulative normal.

The chojce of a scale on which the sensitivity curve is normal is frequently
8 necessity for the interpretation of the sensitivity test. The normal curve could
be replaced by some other curve, and may have to be as a result of future research,
but there seems to be no possibility of avoiding some choice of scale. With this
in view, the fact that a method of assessing a 10 per cent polnt assumes a normal
sensitivity curve seems to be of minor importance. However, some attention has
been paid to the extent to which deviations from normality affect the various

methods.

In practice, it is always advisable to plan and analyze sensitivity tests on

a scale where the sengitivity curve is nearly normal. This is slightly less urgent

when smsll interval sizes are used. The methods described below all requlre such
8 cholce of scale. We shall use the term levels to denote equaily spaced posi-
tions on this scale.

Sirce the intervsal size may affect the results of a sensitivity test, this

agpect of stability has also been considered in selecting the recommended methods.
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Per cent Explosions Versus Severity of Test

Per cent Explosions

100

7

80

60

; /

1%.

20 /
0 1
10 per cent 50 per cent 50 per cent
roint point point
N I '

1.28¢”

Level of
Severity




Recommended Use:

Competing Method:

Metnod 1 : NPF

Estimation of approximste g0 per cent point when the number
of trizls is to be minimized.

For simultaneous estimgtion of the 10 per cent and 90 per cent
points the Up and Down Msthod requires gbout the same number

of trials (i. e., to obtain the same accuracy) as does the NPF
{30 per cent point) plus NPF Inverted (10 per cent point), but

1s wore dependent on assumptions.

Choice of Step and Number of Repetitions:

(M)
(2)
(3)

Procedure: (1)

(2)

{3)

()

Anslysis A. (Rough

For maximum accuracy per trial use a step of about 0.567
To control average number of trials use Flgure 2.
Choose number of repetitions to obtain desired accuracy (Table

3) using average final levels.

Start at g level where almost all explosions are expected.
If an explosion occurs in first trial, move down one step.
Repeat until a non-explosion occurs.
After the first non-expiosion start moving up one step at a
time as follows:
Make one trial, move up if it Iz a non-explosion;
If it 1s an explosion make a second trial, move up if this
i1s g non-explosion;
If this 1s an explosion ma¥e a third trisl, move up 1if it is
a non-explosion;
If an explosion on the third trlal at same level occurs, end

the test.

- not recommended)

The final level estimates the 90 per cent polnt.
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Anslysis B. (Rough - adequate for less than five tests,)

Case 1.

Case 3.

If the step size is bhelieved to be between ¢.2¢and 0.5¢, the
average final level minus .2 steps estimates the 87 per cent
point.

If the step size is believed to be between 0.5¢ and ¢, the
average final level minus .5 steps estimates the 84 per cent
point.

If the step size 1s believed to be between 0.2¢0"and ¢, the
average final level minus .4 steps estimates the 85 per cent

point. The use of this correction 1s less desirable than that of

Case 1 or 2.

Analysis C. (Only recommended for five or more tests on the same sample of ex-

plosive involving a total of at least 75 trials.)

(M)

{2)

(3)
()

(5)

For a set of 5 tests add the difference between the largest and
and smallest level observed to the diffierence hetween the second
largest and second smallest. This sum 1ls referred to as the
Total Deviation.

Enter Table 2 with the Total Deviation expressed In interval
sizes and find the correction factor (in interval sizes) for
the 90 per cent point.

Add this correction to the average final level of the 5 tests.
If more than 5 tests are made (say N tests), compute the Total
Deviation in a manner similar to that described above.

Multiply the Total Deviation in interval sizes by 3#%7 ,

enter Table 2, and proceed as above.

Accuracy: The standard deviation of the esatimate is given in Table 3.




H
P
£
2
&
%
i
i

TABLE 2.

Total Deviation in Steps Correction
for Samples of ¢ in Steps

3 =1

L +.2

5 +.6k

6 +.6

7 +.5

8 +.6

9 +.6

10 +.6

12 +.5

14 +.3

16 -1

18 -5

20 -1.0

TABLE 3.

Corrections for Varicus Values of Total Deviation

Standard Deviation  of Estimates by NPF Method

5 Tests

Single Test 2 Tests N Tests
Interval Standard Standard Standard Stsndard
Size Deviation Deviation Deviation Deviation

+500
2d .50 .35 .22 W
. 564
5 d .56 Lo .26 ﬂ\T
.64
1.00 .64 - hé .29 ﬁu-

underlying distribution).

The stancard deviations of estimates are given In terms

one stendard deviation of the per cent poinﬁ estimated.

of 0 (of the

66 per cent of the estimates will fall within




Figure 2

Average Number of Trials for the NPF Design

(under the agsumption that the test is started where

aimost no non-explosions occur)

Average number of trials
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Methcd 2 : NPF Inverted

Recommended Use: Estimation of approximate 190 per cent point when the number

of trials is to be minimized.

Competing Methods: For slmultaneous estimation of the 10 per cent and 90 per cent
points the Up and Down Method requires about the same number
of trials (1. &., to obtaln the same accuracy) as does the
NFF (90 per cent point) plus NPF Inverted (10 per cent
point), but is more dependent on gssumptions. The Single
Explosion Method requires about the same numbter of trials,

but is more dependent on assumptions..

Choice of Step and Number of Repetitlions:
(1) For maximum accuracy per trial use a step cf about 0.50,
(2) For maximum accuracy per explosion use as small a step as
feasible.
{3} To contrcl average number of trials per repetition use
Figure 2.
(4) Choose number of repstitions to obtain desired accuracy

(Table 3) using average of the finsl levels.

Procedure: (1) Start at a level where almost no explosions are expected.

(2) 1If a non-explosion occurs in the first trial, move up one
step. Repeat until an explosion occurs.
(3) After the first explosion start moving down one step at a time
as follows:
Make one trisl, move down 1if an explosion occurs;
If no explosion occurs make'a second trial, move down if this
Is an explosicn;
If no explosion cccurs on the third trial at the same level,
end the tsst.
(4) Record the level of the last tesﬁ and the interval size.



Analysis A. (Rough

Analysis B. (Rough

Case 1.

Case 2.

Case 3.

19,

- not recommended)

The final level estimates the 10 per cent point.

- adequate for less than five tests.)

If the step size 1s believed to be between 0.2d¢ and 0.59°, the
average final level plus .2 steps estimates the 13 per cent
point.

If the step size is believed to be between 0.5¢ and ¢, the
average {inual level piue .5 steps estimates ine 16 per cent
point. '

If the step size 1s believed to be between ¢.2¢"and ¢, the
average finsl level plus .4 steps estimates the 15 per cent
point. The use of this correction is less desirable than

that of Case 1 or Case 2.

Analysis C. (Only recomnended for five or more tests on the same sample of ex-

plosive involving a total of at least 75 trials).

(1)

(2)

(3)

For a set of 5 tests add the difference between the largest
and smallest levels observed to the difference between the
second largest and second smallest. This sum is referred to
as the Total Deviation.

Enter Table 2 with this number (Total Deviation) expressed in
interval sizes and find the correction factor (in interval
sizes) for the 10 per cent point.

Subtract this correction from the average final level of the
5 tests.

If more than 5 tests are made (say N tests) compute the Total
Deviation in a manner simi:ar to that deacribed above.
Miltiply the Total Deviation ir interval sizes by-;@:; ,

enter Table 2, and prcceed g3 above.

Accuracy: The standard deviatior of the estirmarte 12 given 1ir. Table =.



Method 3 : Up and Down - Large Interval 3Size

Recommended Use: To estimate simultaneously more than one of the 10 per cent,

50 per cent, ard 90 per cent pcints when the number of trials

‘ is to be minimized.

Competing Methods: The NPF and the inverted NPF methods, which together estimate
the 90 per cent gnd 10 per cent points with as small a number

of trials, depend less on the assumptions.

Choice of Step and Number of Trials:
(1) Use a step of about 1.5¢ and no larger.

(2) Choose the number of trials to obtain the desired accuracy by

consulting Figure 3.

Procedure: (1) Start at a level near the 50 per cent point.

{2) If the first trial results in an explosion move down one step
for the next trial; if the first trial results in a non-
explosion move up one step for the next trigl.

(3) After each explosion mcve down a step; after each non-explosion
move up a gstep.

(4) Record the number of explosions and non-explosions at each

level.

Analysis: Use the method of AMP Report No. 101.1R to estimate the 50 per
cent point (m) ando’. Then m + 1.28d estimates the 90 per cent

point and m - 1.280" estimates the 10 per cent point.

Accuracy: The standard deviation of the estlimated per cent point 1s indicated in

Figure 3.
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Figure 3

Standard Deviation of Estimates by the
Up and Down Method with a Step Size
of Approximately 1.5¢

Standard Deviation

.50

Estfmation of]| 10 per cept or 90 per cent Polnt.
.30 \

~\\§"‘*-~ Estimhtion of 5p per cent| point.
.20

\\

.10

Number bf Trials @

L0 50 60 70 _ 0 90 100

The standard deviations of estimates are given in terms of ¢
(of the underlying distribution). 66 per cent of the estimates
will fall within one standaré deviation of the per cent polnt
estimated.
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Method 4 : Up and Down - Small Interval 3ize

Recommerded Use: To estimate the 50 per cent point.

Choice of Step and Number of trials:

(i) Use a step size of about .50 or smaller.

(2) Choose the number of trials to obtain the desired accuracy
by consulting Figure b. '

Procedure: (1) Start at a level near the 50 per cent point.

(2) If the first trial results in an explosion move down one step
for the next trial; if the first trial results in a non-
explosiop move up one step for the next trial.

(3) After each explosion move down a step; after each non-explosion
move up a step.

(4) Record the number of explosions and non-explosions at each

level.

Analysis: : Use the method of AMP Report No. 107.1R to estimate the 50 psr

cent point.

Accuracy: The standard deviation of the 50 per cent polnt 1s indicated in Figure k.
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Figure &4

Standard Deviation of Estimates by the
Up and bBown Method with a Step Size
of Approximately .5 o

Standard Deviation
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Recommended Use:

Method 5 : Single Exploslon

Eatimation of lcw percentage point when rnumber of explosions

is to be minimized.

Choice of Step snd Number of Repetitions:

Procedure:

Analysis A. (Rough)

(1)

(2)
(3)

(%)

(1)
{2)

(3)

(%)

Case 1,

Case <.

For maximum accuracy per explosion use the smallest step that
is feasible.

For maximum accuracy per trial use a step of about .5¢.

To control the averege number of trials per repetition use
Figure 5.

Choose the number of repetitions to obtain the desired accur-

acy (Table 5) using the average of the final levels.

tart at a level where aimost no explosions are expected.
If no explosion occurs on the first trial move up one step
and make another trial.
Continue to move up after each non-explosion until an explosion
occurs.
Record the 1lével at which the explosion occurs and the interval

size.

If the step size is believed to be between .16 and .2d, the
average final level minus 3.5 steps estimates the 7 per cent
point.

If the step size is belleved to be betweem .20 and .54, the

average final level minus 2 steps estimates the 10 per cent

¥Note: Tf the step size 1s believed to be between .1d and 1.20°,

these irstructions stili hold. However, this 1s now a rougher

approximation which should not be used urless ebsclutely recea-

v

aanry.

N
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Analysis B. (Only reccrmended for five or more tests on the same sample
of explosive involving a total of at least 75 trials).

(1) For a set of 5 tests add the difference between the
lgrgest and smallest level observed to the difference
betweer. the second largest and second smallest. This
sum is referred to as the Total Deviation.

(2) Enter Table 4 with this Total Deviatlon expressed in
interval sizes and find the correction factor (in steps)
for the 10 per cent point.

(3) Subtract this correction from the average final level of
the 5 tests.

(&) If more than 5 tests are made (say N tests), compute the
Total Deviation in a manner similar to that described
above. »

(5) Multiply Total Deviation in interval sizes by EE%T ,

enter Table 4, and procesed as above.

Accuracy: The standard deviation of estimate is gilven approximately by Table 5.

-
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Figure 5

Average Number of Trials for the Single Explosion Design

(under the assumption that the test is started
where almcst no explosions occur)

Average Number of Trials

2>
20
15 |
10
5 \\\
\
¢ e’ - = ) 1.0

Irnterval size (ind)
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TABLE 4.

Corrections for Various Values of Total Deviation

Total Deviation in Steps Correction
for Samples of 5 in Steps
3 +1.6
L +1.,8
5 +2.1
6 +2.2
K +2.3
8 +2.4
9 +2.4
10 +2.5
12 +2.4
1k +2.1
16 +1.8
18 +1.h
20 +0.,9
22 +.54
2k -4
26 1.3
28 -2.0
30 -2.7
TABLE 5.
Standard Deviation® of Estimates of Single Explosion Method
n Single Test 2 Tests 5 Tests N Tests
Interval Standard Standard Standard Standard
Size Deviation Deviation Deviation Deviation
.h22
.20 .62 Lhb .36 JIT
.152
-5¢ .15 .53 .43 Nt
.851
1.0d Sg C5 .51 i

# The standard deviations cof estimates are given in terms of ¢ (of the
underlying distribution). 24 per cent 2f the estimates wilil fali within

one standard deviaticr c¢f the per cernt point estimated.
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Recommended Use:

Competing Method:

Choice of Step:

Procedure:

(V)
(2)

(3)

(2)

(3)

Method 6 : Sequential for 12 per cent Polnt
Method 7 : Sequential for 88 per cent Point

Estimation of approximate 12 per cent point when one desires
to make as few assumptions as po2sible concerning the under-
lying distribution. The recorded level estimates the ‘2 per
cent point regardless of step size. This method may also be
used to estimate the 88 per cent point if throughout the pro-

cedure non-expliosion is substituted for explosion, up for down

and down for up.

The NPF Inverted reguires & smaller number of trisls for the
same accuracy but depends more upon the assumption concerning
the underlying distribution. The two methods require about the

same nunmber of explosions.

For maximum accuracy per trial use a step of about .5¢ .
To reduce the number of explosions use as small a step as
feasible.

To control the average number of trials use Figure 6.

Start at a level whers.almost no explosions ars expected.

If noc explosion is obtained in two trials, move up one step.
Continue to move up after each pair of trials until the first
explosion occurs.

After the first explosion, continue to test at thils level using
the following procedure (disregarding the tests already made):
.

a. If two explcsions are obtalned out of 2, 3, 4, or 5

trials move down orz step as soon as the second explosion

bt

g chtaired,
b. If three explosiors are obtained out of 7, &, 9, 10, i,

2 or "3 triala move cown. ore step as soon a3 the third
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c. If thirteen trials are made without obtaining an
explosion move up one step.

d. If no move (as indicated by &, b or ¢) has been made at
the end of thirteen trials, discontinue testing.

(4) As long as no declision of type 3(d) 1s obtasined, continue to
move up or down as indicated by 3(a), 3(b) or 3(c¢c). Dis-
continve testing when a decision of type x(c) follows a
decision of type 3(a) or 3(b), or when a decision of type
3(a) or 3(b) follows a decision of type 3(c).

(5) Record:

a. The level at which a decision of type 3(d) has been
obtalned, or

b. The midpeoint of the last two levels at which testing
cccurred when testing has been discontinued as in (4).

Analysis: The recorded level estimates the 12 per cent point regardless

of step size.

Accuracy: The standard deviation of the estimate 1s approximately .4¢ for all

step sizes.
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Figure 6

Average Number of Trials for the 3Sequential Design

(under the assumption that the test is started
where almost no explosions occur)
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6. Probable Scope of Stalrcase Methods.

Staircase methods are seful in testing under the conditions that

(1). trials are to be made one after another,

(i1). the outcome of sach trial is avallable immediately, and

(1ii). changes 1n severity are easy to make.

It seems reasonable to believe that the efficiencies of the methods recommended in
this report are nearly as great as those obtainable by any practical test. Curves
sketched on Fligures 11 to 14 show an estimate of the true boundary in coupariaon
with the attained results. B8elected points are tabulated below. The usefulness
and efficiency of stalrcase methods in other types of sensitivity problems ars

uncertalin, but deserve careful study.

Estimated Optimum Performance of Stalrcase Methods

Point Accuracy - Accuracy
Estimated per trial Trials perd _per explosion

0.06 {50 per cent) .60

+1.00 (16 and 84 .36 2 1.90
per cent)

+1.20 (12 and 88 .33 b 2.50
per cent)

+1.40 (8 and 92 .29 6 2.90
per cent)

$1.60 (5 and 95 .25 8 3.30
per cent)

*+ The density of testing seems to determine the accuracy per explosion.
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II. TECHNICAL

7. Introduction.

a. Scme Mathematical Preliminaries. Expressed mathematically, the problem of

sensitivity testing, in somewhat more generality than actuslly used here, takes the
following form:
(1). The probability of an explosion at the level x is an unknown function, Dy -
(11). Tests may be made at the levels ho + ¥h, k=0, + 1, + 2, ... where ho
and h have been chosen in advance on the basis of crude information or
guesses about p.. The rules for selecting successive values of k may,
but need not, depend on the results of early trisls.

{(111). It 1s assumed that the function Py is of the form

pX = Q(E;T') )

where q 1s s specified function and m and 0" are constants depending on
the explosive under test.
{iv). From the results of the test it is desired to estimate the lsvel x
at which Py = o{. This estimate can depend on the results of the various
trials 1n any way.
Expressed in these terms, the basic problem iIs to make a gocd estimate with as
little "trouble" as possible. Measures of goodness of estimate anﬂ amounts of
trouble are discussed briefly 1ln Part I (S8ection 4), with the result that we shall
use the criteria given there, namely accuracy per trial, accuracy per explosion and
weighted accuracy.
Of the assumptions made above, (1il) is more restrictive than it should be
from the point of view of applicaticn, but, as discussed in Part I (Section 2),
there seems nc way to avoid it.
In actual practice we shall assume that gq(tj is the cuwwulative normal distribu-

tion with mean zero and unit variance
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which is well tabled* in various forms. A graph of this function ia given in
Figure 1 (page 13).

We are concerned with a statisticanl situation and the result, for exampls, of
making n, trials at k = 3 and n_ trials at k = 5, is not certain -- it will vary

1 2

from repetition to repetition.
There will often be no loss of convenience in aliowing the number of trials in
the resulting test to vary from repetition to repetition -- and this will often be

the case in staircase tests, where the level for the next trisl depends on the re-

sults of earlier trials.

Since we have g statigtical situation, it will be useful to recall some elem-
tary results. If the probability of an explosion on each of n independent trials

is p, then the probability of exactly k explosions in the n trials is

GO pO-p)n e,
where (;) 1s the binomisl coefficient k—,l(lli_k—), . Similarly, the probability that
we obtain at least one explosion In n trials 1is
1 - (1-p™.
Another situation in which we shall be frequently interested is where we make

trials (the probability of an explosion in each trial being ») until we obtain either

one axplosion or n non-explosions. The average number of explosions 1n repeated

Fisher and Yates, Statistical Tables, Tables I and IX.

Kelley, Truman L., The Kelley Statlistical Tablss, Table I.

Mathematical Tables from Handbcok of Chemistry and Fhysics, pp 200-20k.

NAVORD Report No. 205-45, Tables to Facllitate the Analysis of Sensitivity Data.

Pearson, Karl, Tables for Statisticisns and Biometricians, Tables I, II and III.

Work Projects Administration, Tables of Probability Functions, Vol. II.
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tests of this kind is
1 - (-p)t
while the avereage number of trials is

_ IV o
1°p.+ 2-(1-p) P + 300-p)2 p + «o. + n(1-p)" ' p + n(1-p)? = l_i%rpl_

For those tests which end with an explosion, the average number of trials is

E-p + 2-(1-p) p + 5(1—p)2 P+ e + n(l-p)n-] ;J///[l - (1-p)n] = 1—i}+np)(l-p)n'
p(1-01-p)7)
In many Instances our test will provide two pieces of iInformation, say x and
r {see succeeding sections for the actual specification of x and r). Then the
probability that we obtaln particular values of x and r will be denoted by P(x,r).
The probabllity that we obtain a specified value of one of these variables, re-

gardless of the value of the other, is given by P(X) and P(r) respectively, where

P(x) = 25 P(x,r), and
r

P(r) = ) P(x,r)
X

1f we desire the probabllity that x has a glven value when r can assume only one

value, we write this as P(xlr) and immediately see that this is equal to

P(x,r)

P(r)
By the use of these probabilitles we can define the expected (1. e., average) value
of x, E(x), the expected value of r, E(r), and the expected value ot X, given that

r has-a particular value, E(xlr), as
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E(x)

Z x P(x),

X

E(r)

r P(r}), and
2.

r

E(xlr) = .2: x P(xlr)

X

Now if our flnsl reported lsvel, L, i3 a function of x arnd r, wc have that

the expected value of L, E(L), is

E(L) = J_ 2_ L(x,r) P(x,r)
X r
= X Z_ L(x,r) P(xIr) B(r).
X r
Similary, the varlance of L(x,r) is

e
03?2 = Z 2 [ux,r - BW)]  P(xir) P(r).
X I

b. QOutline of the Investigation. Various combinations of the above results by

means of elementary probabllity theory sllow us, at least in theory, to write down
mathematical expressions for the criteria -- accuracy per trial, accuracy per
explosion, and welghted accuracy for the methods under consideration. BRowsever,
a little experience soon shows that it would bse very difficult to compare the
stalrcase methods by means of these analytic expressions. For this reason we hgve
adopted a numerlcal approach to the problem. As expressed before, q(t) is taken
as the cumulative normal distribution for these computatlions with the understand-
ing that any other q(t), for which tabular values are available, could be used with
equal facility. Accordingly, we have proceeded in an exploratory way, computing
the three criteria for a wide variety of cases and then noting any trends which
show up in the data.

Since we have no explicit a priori distribution of ¢, one of the constants

appearing in the cumulative normal distritution, and no practical grcunds fer



36.

assuming one, each individual computation will he conducted at a constant step size,
1. e., /o’ . The ususl procedure in studying a method cr group of methods will be
to make a compleie Investigation for a step size of one half the standard deviation
(¢/) of the underlying distribution. Having done this, we pick out the best of these
methods with respect to one criterion, and then see what effect a change of step
size has on these selected methods.

It should be noted that accuracy per trial, accuracy per explosion, and
weighted accuracy, as defined in Section &, are independent of the percentage point
estimated, 1. e., X As a consequence, the "best"™ tests will be picked out with-
out much attention being devoted to the average level which they estimate. After
determining the "best" tests in this manmer, we shall specify this average esti-
mated level and attempt to devlise adjustments which will minimlze 1ts dependence
upon the step size used in making the tests.

8. The Possible Adjustments.
In addition to ch.using procedures of testing, this study develops methods of

analysis of the results. When a particular test is made by a staircase design,
there 1s avallable at the end of the test
{(1). the result of each group of trials, and
(11). ths results of the individual trials within the group.
Some investigation of specisl cases indicates that the information under (ii) is of
relatively little use in increasing the accuracy of the estimate. We give it pro
further consideration in this report.
Let us now consider a aspecial case of adjustrent. For many of the designs
considered, the information of type (i) consists of
(a). a preliminary critical level, x, and
{(b). a final critical level, ¥.
, X and ¥ will be expressed as multiples of the standard dev-
iation of the underlying normal distribution, the true 50 per cent polnt being taken
as 0.00. We can do this in a theoretical study of the teet, although we could not
do it in an actusl application. Examples are the NPF Inverted Method (the level

of first explosion and the finasl level) anc the Cascade Metiwods (the first and second



levels of explosion). Now suppose that we wish to estimate a percentage point
from these two levels and that we are able to assume
(1). the sensitivity curve 1s a cumulative normal curve, and
(i1). some knowledge of 1its location and spread 1s at hand before the experl-
ment is made,
where the knowledge in (1i) has probably been gained from other tests on similar
samples, or from & preliminary test. It is clearly necessary to have some in-
formation with reapect to (i1}, and to make certain adiustmente In accordance with
it. Otherwise one would never know just what percentage point was being estimated.
To illustrate this, let us consider one of the simplest stalrcase methoeds, namely
the procedure which consists of making the first trial at a point which 1s, hope-
fully, far below the 50 per cent point and msking each trial at successively higher
levels until an explosion occurs. If the interval size 1s large (and we must have
knowledge of the spread of the sensitivity curve in order to judge thls), say 3
standard deviations, then the reported level will be at least the 50 per cent
point (neglecting the small probability of explosion at points more than 3 stand-
ard deviations below the 50 per cent point}. On the other hand, if the interval
size 1s extremely small, say .1 standard deviation, the reported level will be much
amaller.
The adjustments to be applied should accomplish two things, namely,
(1). make the variance (for fixed 8§, where & is the interval size expressed
a3 a multiple of the standard deviation) of the reportea level a
minimum, and
{(ii). make the average reported level (for fixed §) relatively constant as
8 changes.
We can make separate adjustments for these two objectives since the addition of a
quant ity depending only on‘§ will make an arbitrary adjustment to the average for
fixed 8 without affecting the variance for this fixed §. In other words, we will
have simply appiied a transiation. Let us start then by making an ajustment de-
gigned to reduce the variance for fixed §.
For our discussicn of the minimum varlance we shail begin with tests which

end with twc critical levels, x and 3. We immediately see that these resuits can

r
-~

b

=1

also te speciflied by x and r, r beirg defined &3 equal to y-X. r/8 i3 egual %c the
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lergth of the =econd run (i. e., the number of levels on which trizls gre madse)
plus or minus a constant depernding on the method. It is clear that the reported
level should be such a function of X and ¥y that the reported level for x + & and

y + &8 1s g more than the level for X and y. That is, the level is

L=x+ f(y-x), or

L=2x+ g(r).

If we define P(xlr) as the probability of obtaining a particular value x, given
that y-x has a specified value r, and P(r) as the probability of obtaining this

spscified value, then the average reported level, E(L), is equal to

Y[z« g(r)] P(xir) p(r) .
r X

Similarly, the variance of this reported level, L is
df= L Z - EWLI® Bxir) r)
r x

= Y ¥ (x +glr) - E(x) - EB(g(r))1? P(xIr) P(r)
r X

= J Pir) X Ix + g{r) - E(x) - E(g(r)))2 P(xIr).
T X

In adjusting the x values, we are only permitted to add a constant amount,
this constant amount being possibly different for each value of r. Now in choosing
tnis constant, namely g(r), we are at present requiring that it should minimize c{i.

It is well known' that under such circumstances, we should choose

"

o]

= - E{xlr)

i

- 2 x P(xlr),
X

*+ Differentiate cfi with respect to g(r), set this equal to zero, and solve for

gir).
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for with this choice of g(r), the means of all subsets of transiormed x valusc are
equal, and consequently equal to the pooled mean. With this cholce of g(r) we

have

o2 - Y 2 (x - E(xlr))? P(xlr) P(r)
L r X

since E[E(xir)] = E(x).

In order to accomplish this adjustment for r we find that i1f we plot E(xIr)
against r in terms of the standard deviation of the underlying dlstribution we oﬁ-
tain a graph that is nearly a straight line (see Figure 7). Hence we can approxi-
mate g(r) by a linear function. The addition to the variance caused by this ap-
proximetion is negliglble.

Thus for fixed interval size,_§, we can find g constant, a, so that

X + &r

i3 well adjusted for the effects of r, though not at all adjusted for the effects
of possible changes in §. The dimensionless quantity a is a function of é; but
computation shows that it varies only slowly. We shall, therefore, select an
average valuq for each prejudged range of values of & which we wish to consider.

To 1llustrate this adjustment with a very simple example of a different sort,
consider the Single Explosion plus One Trial Design where one makes a single trial
on each level, moving up a level after each non-explosion. This procedure is
started at a level on which the probability of obtaining an explosion i3 almost
zero. As soon as an explosion is obtalned, we record this level and make one final
trial on the next lower level, recording whether this trial results in an explosion
or non-explosion. x 1s the level at which the first explosion is obtained and p
is either 0 or 1 depending upon whether the final trial iz g non-explcsion or an
explosion. Given below for several interval sizes are the expected values for x

when the final trisl 1s: an explosion and when the final trial is a non-explosion.
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Figure 7

E(xlr) as a Functicn of r
for a Cascade Design
(k=1,m=],h=j’)

E(xlr)

+1.00
NN\

-1.00

-2.00

~3.00
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Single Explosion plus One Trial Design

One trisl on egch level, final trial at one level
below the level of first explosion

Expected Level of Expected level cof
Interval first explosion first explosion Variance of lesvel
Size when fingl trial when final trial of first explosion
is an explosion is 8 non-explosion
20 -.36 -.90 .39
.5d +.29 -.45 .56
1.00 +.95 -.01 : .79
If the intervsl size 1s .2, then we take a as -.54. This means that

E(x+ar|r=0) = E(x+ar|r=1) = -.90. Similarly, for interval size .5, a 1s -.74 and
then E(x+arlr=0) = E(x+ar|r=1) = -.45; for interval size 1.0, a 1s -,96 and |
E(x+ar|{r=0) = E(x+arlr=1) = -.01,

Notice that in this instance the definition of r was at our dis-
posal. If we had defined it to be 0 if the final trial were an ex-
plosion and 1 1f the final trial were a non-explosion, then for interval
size .2, a would be +.54 and E(x+arlr=0) = E(x+ar|r=1) = -.36; for
interval size .5, g would be +.7h and E(x+ar|{r=0) = E(x+ar|r—2) .29;
and for interval size 1.0, & would be +.96 and E(x+ar|r=0) = E(x+ar|r=1) =

.95.
We have thus replaced the situation tabled above by the following:

Single Explosion plus One Trial Design

One trial on each level, finagl trial at one level
below level of first explosion

Interval Expected value of Expected value of Variance
Size a x+ar when final x+ar when final trisal of
trial 1s an explosion is a nen-explosion X+81
0.2¢ -.54 -.90 -.50 .34
S5¢ - Th ~.45 -. ks NS
1.0 -.94 -,01 -.01 .60
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The additional adjustment necessary for making the average reported level
relatively fres from cholce of Interval size will be based upon the fact that the
addition of a multiple of the Interval size wlll mske a larger adjustment the
larger the interval slze. If the average reported lavel were a linsear function of
interval size, then our adjustment would nske the average final reported level
completely independent of interval size. Acutally, the average level 1s not a
linear function, and hence the adjustment will not be perfect,

This adjustment for changes in § must be applied in terms cf interval size

and not of standard deviation since only the interval size is known accurately.

Let

X(8) = averags partly corrected estimate at interval size §

= gverage value of (x + ar),

and let b be the number of intervals to be subtracted as a correction for interval

size effects. Then

X +ar - b8

i1s the final estimated level. The value of b will be chosen to make the average

estimated level at interval size 8§,

x(8) - bé

nearly constant. The best correction very nsear § = 30 could be obtained from

- (a8),

\ —€
07 0p

This correction can best be illustrated in a graphical fashion. Thus in Flgure 8
we have {irst plotted the average valus of x+ar (for interval sizes of .2¢’, .5¢
and 1.00) for the 3ingle Explosion Design which we have been considering in this

section, namely one trial on each level with the final trial one level bslow the

level of the first explosion.



Figure 8

E(x+ar) for a Single Explosion plus One Trial Design

(one trial on each level, final trial one level
below level of first explosion)

* E(x+ar)
+.20

P

Straight lines are tangentg
to the curve E(x+ar).
-1 .20/,
=1 LO _— 1 !
0 ‘ .2 b LEC .8 1.0

|
| Interval Size (&)
|
|
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Between these computed points we have then drawn a smocth curve. The value
of b Ior a purticular.SO can be cttained with graphical accuracy by drawing the
tangent to the curve at § = 56 and taking the slope of this tangent. For this
example, the tangents have been drawn at § = .20, § = .50] and 6§ = 1.00°, and the
corresponding vaiues of b are 2.1, 1.15 and .7. The results obtained by the use of

these correction factors for interval size are surmarized in the following table.

Application of Correction Factor for interval Size
to a Single Explosion plus One Trial Design

(one trial on each level, final trial one level
below level of first explosion) )

Interval Size E(x+ar) E(x+ar) E(x+ar) E(xX+ar)
(8) -2.10'8 1.5 8 -.70" "%
.20 -.90 ~-1.32 -1.13 -1.04
o ~.T1 -1.3h -1.06 -.92
.ho ~,57 ~-1.41 -1.03 -.78
.5¢ -.45 ~1.50 -1.02 -.80
.6c -.34 ~-1.60 =-1.03 -.76
L4 ' -.25 -1.72 -1.06 -.Th
.8¢ -.16 -1.84 -1.08 -.72
.9¢ -.08 =1.97 -1.28 -.7

1.00 -.01 -2.11 -1.32 -. 71
1.1¢° +.06 -2.25 -1.20 .71
1.2¢ +.12 ~2.43 -1.26 -.72

A +
arawn at .2

o}
lud

* Slope of tange
#+ 31gpe of tangent drawn at .5d’

##2 3lope of tangent drawn at 1.00
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The wnderlyling distribution in undorstood to bo worest, %ho lovaels af rhieh
tho toate aye vo be iwade are -3.0, <2.%, <2.0, ~1.9, 1.6, =.9, 6.9, .3, 1.0, 1.5,
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faryed %o eo tho Single Explosien Msthed; hns boon invedticabod few 1, 0, 3, b, oy

5 trlslg at a lovel., Move gonerally a Single Beplenien plusc B B9indg [Mehesd ine
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numboya (&, ®, h) repragenting the pumboy of rinlo om coeh 3GUod 4B W0 UB 0CHBIRGA,
tho nuwber of triels at the fipal lovel ond tho Ruihow of IRBoRURLe Botucon ¢ho £iFat
explosion and the finsl lavel (positive h bolns mecourad 1n tho disoatien opRasitn
that of tho up ssquence).

In all but the m = 0 cages, the level yaported deponds em WhIthor R0 £inal
get of tyisls vosults in an oxplogion er not. An edjuobrsat 86 ths leved of tho
firat oxplosion is made In such e vay thet the expssted valud of tho wopswbsd Lovol
for on oxplogion In the last set 45 the semo ng for wew-oxplegiewn, Givon &hn
intesvol slze end starting polnt (fer the nosanl dintributisn) whio cdjuoer-ae ndnde
mizes the varlance of the vgperted level.

Oae monsure of the efflclency of s test 1l ascuresy pow tpiol, I¢€ ogsh tried
ig oqually expensive regerdless of the remulf, then in raposted tcots ong obbtoing
e gpeelfiod dogree of accurecy mogt cheaply by using the gebsmo uith tho wastimum
accuregy per trinl. Thls quontity io glven for o nuvabew of Sinnla Biplocien piug
m Peinig Schowcy in Weble 6.

Pay o glvon ¥olue of i and B, tho cseusaey pop SHinl despergng 0Leh fagxonndnn
e G20k 30, B0 froctor €ho awshop of tplodo ob cnel Aouok ea WD v pogetaso, eho
ragg teloly it vokeo to atindn a fAves egewsasy URTR 0RLOP §hAnsn Tmoet Ziord,

Yop o (fuca vales og oowd R, o vomioglon udth 1) R0 Ledh ekian,
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TABLE 6
LE4r
Accuracy per Trial for
Silgle Fxploslon pilus m Trisly Mellwods

(Interval Size of .5¢")

k7.

-~

{.323
348
355
347

L 3hT
327

L334
.3
+339

<331 +353
.350

330

352
312
.308

299
.283
.269

.286
.250
242

2717
236
.213

(.262)
.280
.291
.29%

.281
.271
+259

.306
. 291
279

.266
.270
272

291
.296
.303

.2k5
.232
.220

$253
.2k6
243

.2h0
.221
. 206

236
.216
.199

(.228)
.254
+223
« 257

.248
.238
.236

216
.205
.198

.256
-259
.260

.258
.266
.268

»220
«217
213

.212
.196
. 187

.210 .210

N
FOUN =0 [ WD =0 W —0O [WN —~C

{.208)
.216
.226
.231
.230

QNI FANND — O

(.193)
.205°
211
215
.218
L2155

i@

rir

For the estimated level iIn certain selected caseg, see

(pages

57 and 72).

sAcluraly per EapicsloL, ses Tabie 7 (page 7).

i Accuracy, see Tuble S (page s1).

/

refer t¢ the Birgie Explosion Method.

Tables 12 and 19
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The maximum for rixed k and h is at a value of m which is greater the greater k is.
In other words if a small number of trials 1s used at each level on the up seaquencc,
a smalli numpber ol triaig shoula be used at the final level.

For given k and m, the maximum is near h = 0. In some cases it pays to jump
up one or two levels- and make the final trials. However, since at k = 3 the
maxima for various m are only slightly different from values for h = 0, 1t was
thought that only the h = 0 cases need be studied for larger k. In these cases
there 13 a maximum for m approximately equal to k.

The maximum accuracy per trial for all Single Explosion plus m Trisls Methods
ig given for k = 1, m = 2, h = 0, namely .355. In general, it tskes an unneces-
sarily large number of trials if one takes more than one trial at a level cn the
up sequence.

In some gsensitivity tests the expense of a trial resulting in a non-explosion
is negligible compared to that of one ending in an explosion. In such instances
one wishes to minimize the number of explosions in obtaining a given accuracy of
estimate. The criterion for this is the accuracy per explosion. Thls criterion
ig tabulated in Table 7.

For the up sequence alone (i. e., Single Exploslion Method) there can be only
one explosion and then the criterion is simply the reciprocal of the variance.

For these cases the variance decre. 3:eg as the number of samples tested per level
increases. In fact, it 1s easy to see that by increasing the number of trisls
indefinitely, on2 can be sure of ending on the same level that one starts on.
However, when another set of trigls 1s made at a final level, the expected number
of explosiocns is greater than one. For a given palr, m and h, the accuracy per

explosion increases with increassing k.
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For a given value of k and h accuracy per explozlon may go up or down with
increasing m. For h = 0, the criterion decreases for k = 1 and k = 2, but it de-
creases with m, having a relative maximum near m = k. For h large, the criterion
decreases and for h amall it Increases.

For given values of k and m, the maximum of the criterion 1ls at approximstely
h = +2. In such cases the final trials sre made at a very low level where the
provabllity of an explosion is small.

0f the schemes studled, the best from the point of view of number of explosions
is the up sequence alone for k = 5 with a variance of .317. Of course, for highe:
k the variance would be less. On the other hand with a high value of k, one takes
a considersbly greater number of trisls.

A third criterion which takes account of both number of trisls and number of
explosions i3 the weighted accuracy. This criterion gssumes that the expense of a
trial resulting in an explosion is 11 times as great as one resulting in s non-
explosion. As pointed out in Section 4 it is a compromise between sccuracy per
trial and accuracy per explosion. The values for this criterion are given in
Table 8.

In the case of the Single Explosion Method the maximum welighted accuracy is
given by k = 2, 3 or 4. For k = 1 the number of explosions is too large for the

variance; for k = 5 or greater the number of trials is too large.



TABLE 8.

Welghted Accuracy for

Single Explosion plus m Trials Methods

{Intervel Size of ,59)

|

.86 »95
.87

.03
.98
-93

.87 .93

1.60 1.15
.93 1.0%
.88 .99

A7
LIl

15

1.20
1.19
1.19

.16
.21
.19

1.25
1.23

1'19
1.16
1.14

1.17

\n

A o~ O FUHMND O VWD~ O (WD O W =0

(

For Accuracy per Trial, see Table 6 (page L47).

Por Accuracy per Explosion, see Table 7 (page 42).

These values

refer to the Single Explosion Method.
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For the Single Explosion plug m Trlsls Method one has simlilar comparisons for
fixed m and . For =xemple, for m = 1 and h = 1 the maximum 18 at k = 3. 1In fact,
the larger m is the greater 1s the k for which the welghted accuracy 1s a maxlimum.

Varying m for h = 0 and k fixed ylelds s meximum for s velue of m depending
on k. The correspondence (1. e., for h=0)1ls k = 1, m=0; k= 2, m= 0; k = 3,
m=3%; k=54 m=3; k=5, =5, The meximum wolghted sccurscy for any k and m
(h=0) 1s 1.2k,

It k¥ snd m are held {ixed, the wsximum weightod accuracy occurs neer h = 2 for

k 1, near» h = 1 for other k¥. For large k, however, the weighted accurscy for

0 differs little from this meximum.

oy
]

Tnon the hasis of this investigation at interval size .5¢", five 8Single
Explosion plus m Trials Methods were sslscted to be studied gt different intsrval
gizes. The results of thils Investigeiion sre stated in the next section. The

five methods chosen wers:

1. k=1, m= 1, h=0
2, k=1, m=1, = 1
3. k=1, m= 2, = 0
b, k=2, m=1, h=20
5. k=2, m= 2, = 0.

¢c. Csscede Methods. A Cascade Method is g combination of two Single Explosion

Designs, the first one 4tarting at -2.5 snd the second starting at & glven number
of intervals from the end level of the first run. The numwber of trials per level
for each run need not be the ssme. Each Cascede Scheme can be identified with g
triplet of numbers similar to those used for the Single Explosion plus m Trlals
Method. Here k, m and h represent respectively the number of t..als on each level
in the first up seguence, the number of triasls on each level in the second up
geguence, and the number of intervals bebween the end of the first segueonce and the
atart of the second one,

In 8]l cases the level reported depends upon the end level of the flirst run,

X, and the end level of the second run, ¥. An adjustment to the level of the filrst

explosion 1s made so that the expected value of the reporied level lg the sswme for
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all combinatlons of x and y for which y-x has the same velue. This adjustment
minimizes the varisnce of the reported level.

The ssme measures of efficiency are used to compsre the various Cascade Schemes
a8 were used to compare the 3ingle Explosion plus m Triasls Schemes. Table 9 gives

the values for accuracy per trial.

TABLE 9°

AccuracyM per Trisl for
Cascade Methods

(Intervals of .5¢)

k \\\7531\\ 0 1 2 3 L
1 1 . 383 .38k 372 .354L .332

2 . 365 366 .353 .328 .298

3 + 331 327 .300 267
2 1 297

2 <317 LE1% .298 276 248

3 .303 .302 . 283 .259

L .285 267 .252 .221
3 i .264

2 . 285 .279 .266 .2L8

3 .26k .252 .230

¢ For the estimated level in certsin selected cases, see Table 15 (page 63).
a4 For Accuracy per Explosion, see Table 10 {page 55).
For Welghted Accuracy, seoe Table 11 (page 56).

Glven values for m and h, the fewer trisls one msekes on s level in the first
sequence, the greater will be the accuracy per trisl. In every scheme tested the

nexlmum sceuracy per trial was for k = 1 for a fixed m and h.
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Fixing k and h, one finds that chenging the number of trials on a level in the
gecond sequence does not cause as much varlstion ss is obitelned from changing k.
The meximum is at m = 1, even though k incresses. ¥From thls one concludes that the
fewer trisls one uses on & level in both sequences the greater is the efficlency.

For a given k and m, the maximum seems to be near h = 0. Actually it might
result in slipghtly greater accuracy to continue up one or itwo levels before start-
ing the second sequence. However, from the table it 1s evident thst as the number
of levels backed down decreases, the accuracy per trlgl incresses at a decreasing
rate. In the scheme kX = 1, m= 1 or 2 the maximum is at h = 1, and the accuracy
decresses if one starts the second sequence at the same level as the first sequence
ends.

For all Cascade Schemes tested the maximum accuraecy per trisl results for
k=1,m=1, h= 1. In general, the best results are for small k, m and h.
Changing ary ftwo of these guantities, the greatest accuracy per trisl is still ob-
tained for a smsll valus of the third one.

Considering the accuracy per explosion, one finds it is merely a function of
the variance. Since both runs end as soon as one explosion resultis, the number of
exploglons is always two, and the accurscy per explosicn is the reciprocsl of twice
the varlance. Table 10 gives thls measure for s number of Cascade Schemes.

For a given pair, m and h, the more trials on a level of the first run the
greater 1lg the accuracy per explosion. Similarly for a given palr, k and h, *he
more trisls on g level of the gsecond run the greater is the gccuracy per explosion.
This is to be expected since the variance decresses (thus the reciprocal incresses)
a3 the trisls per level Incresges. Increasing the number of trisls per level in
the second run has less influence than an increase in the number of trisls per level
in the first run.

Holding k and m constant one notes that for increasing h the accuracy per ex-
plosion increases, but at g decreasing rate. It is quite obvious that it will level
off, since a jump that makes the second run start below -2.5 has approximstely the
gume effect a3 & smaller jump that makes the second run start at -2.5. (The pro-

babliity of an exploszion below -2.5 1g sssumsd to De zZero.)



TABLE 10

Accuracy"} per Exploasion for
Cascade Methods

(Intervals of .5¢%)

k ‘\\jﬁéi\\l 0 1 2 3 b
1 1 1.5 1.56 1.65 1.71 1.76
2 1.7 1.64 1,80 .92 2.00
3 1.66 1.86 2.02 2.13
2 ] 2,03
2 1.90 2.06 2.18 2.26 2.31
3 .92 2.1k 2.29 2.42
L 2.16 2.36 2.51% 2.71
3 1 2.23
2 2.16 2.51 2.41 2.7
3 2.40 2,54 2.62

# For Accurscy per Trial, see Table 9 (page 53).
For Weighted Accurscy, see Table 11 (page 56).

0f the schemes tested, the best from the point of view of accuracy per ex-
plosion 1s the one with k = 2, m = &, h = 4. However, larger k, m end h, if
studied, would undoubtedly have glven greater values for accuracy per explosion.

The values for the welghted accuracy are given in Taeble 11, Fixing m and h,
the welghted accuracy ig greater at k = 3 for smwall values of h and grester st

k = 2 for larger values of h. For fixed k and h weighted accuracy varies little with

(na

changes in m. The weighted accuracy is slightly larger at m= 2 for k = 1, g
m= 3 fork =2and at elther m= 2 or 3 for k = 3. Fixing k and m glves the
maxlmun weighted accuracy at h = 2 or 3, though a change in h has little effect.

The maximum weighted accuracy for all of the schemes tested was 1.27 for k = 2,
m= 3, h =2, Judging from the quantitles in Table 11, there iz only a slight
pdventage in any one method over any other since the values listed vsary only from

1.05 to 1.27.



Welghted Accm,lrf'a,c:y{z for
Gascade Methods

TABLE 11

(Intervals of .5¢ )
k \K\E\Q\\k 0 1 2 3 L
1 1 i 1.05 1.1 1.1k 1.15 1.15
2 1.05 1.1 1.19 1.21 1.20
3 ; 1.1 1.19 1.21 1.18
2 1 1.21
2 1.20 1.2k 1.26 1.2k 1.18
3 1.17 1.25 1.27 1.25
L 1.23 1.25 1.23 1.22
3 i 1.21
2 1.23 1.26 1.26 1.2k
L 3 L 1.26 1.26 1.23

# For Accuracy per Trial, see Table ¢ (page 53).

For Accuracy per Explosion, see Table 10 (page 55).

Upon the basls of our investigstlon at interval silze .5 ¢, we have selected

five Cascade Methods for closev study In the next sectlon.

be concerned with thelr behevior when the

chosen are as follows:

o

AN

L,

interval

In particular, ve shall

glze 1s changed. The methods
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10. Btaircese Methods at Differont Sten Sizes.

8. General. For most staircase methods the size of the step has an effect on the
outcome of the test. However, for some methods such as the Up and Down ({or step
gizes less than 1.5¢") the step sirze affects mainly the accuracy of the finsl esti-
mate, but not its average value. On the other hand the average outcome of a method
like the Single Explosion Method depends to a considerasble extent on the size of
the step. In thls case, if the step slze 1s extremely small the percent polnt esti-
mated 1s relatively small because when many trials are made where the probability
of an exploslon ié_small eventually an explosion occurs (1. e., cne moves up very
glowly). If the astep size is large, the test quickly arrives at s higher per cent
point. Filgure 9 indicates the average level at which the exploslon occurs for dif-

ferent gstep slzey. A table of the expected levels 1is given below.

TABLE 12
Average level Estimated by Single Explosion Dasign

(one trial on g level)

Step 8ize Average level

. 025 -1.711
.05 -1.hLkY
o1 ~1.140
.2 -.790
] -.2h
07 “coos
1.0 +.278

b. Correciion for step size. It would be desirable to use g design for which the

average estimated point does not depend on the step aize. Unfortunstely, most of
the efficient designs have thls step size effect and it is therefore necessary to
include in the analysis sccompanying a design a compensating cerrection. One can-
not completely eliminate the effect but if the épproximate step glze 12 krown, 1t
can be veduced Lo an almost negligibhle amount. The genersl approach to be used in

this problem hse been outiined in Secticn 8.



Figure ¢

Average Level Hstimsted by the
Single Explosion Design
(one trial on a level)
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An example will gshow the kind of correction that 1s fessible. The Single
Explosion Method estimated —~.7906¢° for a step slze of .20 and -.2416" for a step
size of .50 . We deslre an adjustment, which is independent of the step size, such
that the adjusted average level will be the same for the two step sizes. In other

words, we wish to determine s constant, ¢, such that

b¢, and

i

-.7900° - {.2¢') ¢C

- 2e - (.5« ) ¢ = ho' .

From these equations ¢ is im-ediately found to be equal to

~.790 ~ .21

-2 + .5 = 1.83.
This procedure can be summarized as follows:
Step Size Average first Average level of first
explosion st explosion minus 1.83 step sizes
-26 "c?906’ ”1-1566’
S5 -.2ho’ -1.1560°

In Flgure ¢ thlg correction can be 1llustrated by drawing a straight 1ins through
the points on the curve at .2 and .5, The y-intercept of the line is approximateiy
=1.156 and the slope is spproximately 1.83.

To correct for eny other two step sizes we draw the corresvonding line. If
the curve were g gstraight line then the ssme line would correct for agll polnts; that
is, a constant times step size gsubtracted from the estimste would glve the same
average lrrespective of step size. Small curvature 1ls one of the deslrsble festures
of & good test.

For each palr of step slzes, one can meke an exact correction in this manner,
1f this difference between the two step alzes is‘small, the correction willl hold
good approximstely for the regilon between. In Section 5 some rough corrections are

suggested. Tor example, between .5 snd 1.0 step sizes 1t 13 suggested that cne
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subtract 1 step. This correction gives

Interval Size Average Level
.5 -, Thi
1 =705
1.0 =.T726

All of these values are near -~.67 which is the 25 per cent point.

¢c. The NPF and NPFI Methods. The NPFI method (i. e., NPF Inverted) is simply the

reverse of the NPF Method. In the former case we estimate the 10 per cent point
(approximately) and In the latter, the 90 per cert point. For the sske of con-
venience, we shall wrlte in detall only of the NPFI design. It is understood that
analogous ststements hold true for the NPF Method.

Below 13 given s table which indicstes the expected level and the varisnce of

the reported level for various step sizes.

TABLE 13

Characteristics of the NPHFI Method

Step | Expected Averasge No. Accuracy Aversge No. Accurscy
Size Level Variance of Trials per Trigl of explosions Per explosion
o1 -1.300 .2250 19.7 .226 1.65 2.69
.2 ~1.153 . 2497 15.0 .267 1.87 2.1%
.5 ~-1.219 .3180 10.2 .308 -1.96 1,60
1.0 ~1.hok .h152 8.1 .297 1.77 1.36

For this method the level estimsted depends on the step size in such a way that
for elther very =smsll or very large step sizes the prer cent point is very amal:
while for interiedlate step sizes, the per cent point may be as large 2g 13 per cent.
In Section 5 lnstructions ave given for correction facteors for various pairs of

step sizes. [ffor a step zize of sbour .2 1o Corretii-n ic weeded. The aversue

{2}

mapber of trigle Increeses o the step size cdecreaves. 02 the other hand the

lzz ~ne reges few trlgis but roves

varlarnte cecrea

]

e z RO

es. Tnst ia, I.r lavEe Tisy

e
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very rapldly. fThus there is conslderable varisbllity. The accuracy per trial has
a broasd meximum near s step size of .60,

For g particular interval size one reduces the varlsnce by using the informg-
tion given by knowledge of where the first explosion cccurs. This adjustment 1s
made ag suggested In Section 8. This means that for each value of the dlfference
between final level and firat explosion level one calculates the expected level and
adjusts for the differences of these levels. However, the reduction in varlsnce in
thig instance is fairly smell, less then 10 per ceni. The expected levels glven
in Table 13 are uncorrected, while the variance is with the correction agpplied.

The average number of explosions also depends on the intervsl size, Ths
meximum 1s st about an intervel size of .5. Since the variance is smallest at the
smallest intervsl size, ths sccuracy per sxplosion ls largest at small Interval
gizes. Hence, if one wishes to keep the number of explosions down, one uges the

smallest step size feasible. This will also maximize the welghted accuracy.

d. Cascsde Methods. As indicated in Sectlion 9 five Cascade Methods were selected
for a study of the effect of step slze on expected level and effliclency. The
characteristics of sach method were computed for step slzes of .2, .5, and 1.0. To
make certain that at step size 1.0 (where the effect of the relation of intervals
rto the origin is grestest) testing on the levels -2.5, -1.5, -.5, etc. instead of
-3.0, -2.0, -1.0, etc. made no difference, starting at -3.0 was compared with start-
ing st -2.5 for esch method. Igacntlally the only difference wea that starting
at -3.0 added one half the number of trials per level to the average number of
trials.

In & test with a given Cascade Mathod two numbers result, nsmely, the levels
of the first esnd second explosion. Another way of recording this information is to
take the level of the first explosion, end the level of the second explosion minus
the level of the {irst explosion. This difference has been designatec¢ as r., In
Figure 10 we have graphed, for a particular wethod and step girze, the expected level
of the first explosion for each value of r. This information 1s for the k¥ = 1,
m= 1, h= 1 gchemz (step slze of .2¢"). If, in meklng o test, one were certain thst
the step slize were .2, then the most efficlent estimate would be to add to the level

of the first explosion su amount depending on r go ithat whatever the vaiue of r cne
<

P ———— e T e e e e e —— s ey oo P T I
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wigure 10

The Expected Level cf the First IExplosion as
a Function of r for a
Cascade Design
(k. =1, m=1, h=1)
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obtains the gsswe level on the aversge. Thls correctlon minimizes the variance.

The effect of r 1g nearly linear. Hence, we can gimply add to the level of
the first explosion an amount which 1s the product of r and a certgin number, a.
In the case of .2 siep size the proper number g is .7k. Then one estimates -.50
(i. e., the 31 per cent point). The varlance 1is increased negligibly (by .0001) by
using a linear correction instead of the exsct correction. ITn Table 1% are given
the values of the correction factor g for four step sizes, and also the average

reported level.

TABLE 14

Correction Iractors for g Cascade Design

(k =1, m=1, h=1)

Step Size Correction Corrected
Factor a Aversge Level
o1 .78 -.83
.2 STh -.50
.5 .66 -.03
1.0 .58 +.38

If the correction factor were the same for agll step slizes, one could set up s
single adjustment for use at any step size. Then one would merely need to correct
for variations in the average level as in the NPFI scheme. Since the correction
factors do vary, we must use some compromise. For example, supposs we bslleve that
the gtep size 1s between .2 and .5. If we add 2/5 of (y-x) to the first end point
we would get almost the same eifect ag if we used .74 ( for .2) or .66 {(for .5).
This is, of course, the same asz averaging the two end points and weighting the
second twice as heavily as the first. Then to correct for the asverege level we
shall subtract 1.7 ilnterval sizes (see discussion of Single Explosion Design in (b)
of this section). Such & procedure estimates the 12 per cent point. At .2 there 1s
a blas of .010 sud s contribution to the varisnce of .0C¢16; at .5 there ig neither

bias ror contrilbutlon tc the verlaunce.
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Table 15 gives the correction facters for (y-x} and the average levels for

other Cascade Schemes.

mgde for each procedure.

Values of the Correction Factor and the Average

TABLE 15

Reported Level for Various Cascade Masigns

Adjustments similar to the one consldered ahbove can be

k=1, m=i, h=3 k=1, m=2, h=3 =2, m=1, h=3 k=2, m=2, h=1
Interval Average Average Average Average
Size Reported Reported Reported Reported
8 Level a Level a8 Level a Level
.2 .65 ~-.6k .81 ~. 81 .51 -.90 .13 -.90
.5 .5h -, 20 - 6b = hh b5 -, 46 .6k ~.50
1.0 .50 +.28 .57 +.01 ik +. 01 «57 -.13

In general, for Incressing step slize we have increasing variance but decreasing
average number of trials. The net result is that the accuracy per trial increases
to a point and then levels off or decreases. In several cases the maximum accuracy
per trial occurs near a step size of .5.

It is characterlstic of all of these methods that the smaller the gtep size the
lower the per cent point estimated. Suppose that we plot the estimated point against
step size and draw the tangents to the curve at the known points., Call the inter-
copts on the vertical axis M5 . These represent the average levels when the cor-
rection 1s idegl for step sizes near o . Ms also increases with & .

Figure 11 1s the plot of MSS against gccuracy per trial for different interval
sizes and different Cascads Methods. Up to interval sizes of about .5 the points
1ie guite well on one curve; which means that accuracy per trial increases as M
increases, regardless of the test. This implies that it i3 more expensive by any
test to estimate extreme per cent roints thar (relatively) moderate ones. Furtherj
meire, 1t does not make 1090 much aGifferernce which of these tests one ugscs. The

values ofrﬁg and accurecy per tria: for the Usscade NMethode are piven in Table "6,
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TABLE 16

Values of hﬂg and Accuracy per Trial
for Cascade Methods

— e — A e e
k=1, m=1, h=1}| k=1, m=1, h=3| k=1, m=2;, h=3| k=2, m=1, h=3 | k=2, m=2, h=1
Interval MS Acc./ MS Acc./ MS Acc./ Mé Acce./ Mg Acc./
Size Trial Trial Trial Trial Trial
— - - - L - — - . e e — = —— EY
1
.1 -1.28 . 269
. -1.00 .318 | -1.01 .310 | -1.07 .29k | ~1.29 .251 | -1.28 .269
05 -.61 . 384 -.80 .35 1 =-1.00 .328 | -1.07 ,297 | =1.03 .313
. =.91 .303
1.0 -7 . 387 -.51 V327 - T7 284 -.72 .280 =.67 316

The number of trisls on each level in the successlve runs of s Cascade Method
gshould clearly affect the accuracy per explosion. Empirically the product of (1)
the sverage over the runs of these numbers, end (1i) the number of levels per &’
1s the important quantity. We denote this product as trislsg gﬁglgi For example,
the scheme involving one trial per level moving up twice provides 1 trisl per ¢’
when the step size is 1, 2 trials per ¢ when the step size i3 .5, etc. The sacheme
which proceeds up by one trisl to an explosion and then by two trials per level to
the second explosion provides 1.5 trials per ¢ when the step size is 1.0.

Figure 12 indicates this relationship for the 5 Cagcsde Methods. It 1s clear
that the points are nesrly on a single curve. To ralse the accuracy per explosicn
one must increase, in any way, the number of trisls per ¢ . This can be done by
decreasing the interval gize or by increasing the number of tests per level, both
of which increase the average number of Lrials, or LY changing (0 & method with
fewer runs and more trials per level. Thig latter need not increase the asversge
number of trials. Appsrently the practical maximum accuracy per explosion 1s be-
tween & and 6. The values for trials per ¢’ and accuracy per explosion for the

Cagcade Methods are glven Iin Table 17.
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TAB

1"
ad g

Values of Trisls per ¢’ and Accuracy per Explosion
for the Cagscade Methods

k=1, m=1, h=1| k=1, m=1, h=3| k=1, m=2, h=3] k=2, m=1, h=3 | k=2, m=2, h=1
Int?rval Trials Acc./| Trials Acc./| Trials Acc./| Trials Acc./ |Trials Acc./
Size perg’ HYn ] nar g Byn. rer ¢ Exp. pereg’ Exp. per & Exp.
= === T e
.1 10 2.89 ——W
.2 ) 2.25 5 2.50 7.5 Z2.55% T+5 2.081 i O 2.065
.5 2 1.56 2 .71 3 1.92 3 2.03 4 2.06
o7 2.14 1.6
1.0 i 1.15 1 1.27 1.5 1.4d ) 1.46 2 1.52
e. Single Explosion plus m Trisls Methods. These methods cen be treated in a

fashion similar to that of the Cascade Methods. On a test with s given method two

pleces of data result, namely, the level of the first explosion and whether an ex-

plosion occurs in the subsequent trisl or set of trisls.

The reported level 1s the

level of the first explosion modified suitsebly according to the result of the next

trial (or trisls).

Table 18 gives the expected level of the first explosion for

an explosion or for s non-explosion at different interval sizes for one design.

TABLE 18

Single Explicsion plus

m Trials

(k =1, m=1, h = 0)
Step Expected Level Expected level Difference in Variance
Sire for Explicsion for Hon-Explosion kxrected Levels N
z - 3% ~.52 .52 <332
e -1 -.55 .72 cbiT
: - g -.23 $5¢ 253

|
|
i
|
ii
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The type of adjustment possible for minimizing the variasnce of the reported
level with the Single Explosion plus m Trlals Designs has been discussed In Sectlon
8. TFollowing this example, we see that at step size .2 one should subtract 2.6

(= .53/.2) step sizes when an explosion occurs on the last trial to match the -.352

average for a non-explosion on the last trial with the minimum variance {(.333). At

izes to esili-

w

step size .5, however, the matching adjustment is 1.4 (= .72/.5) step
mate -.55. Suppose we use the correction of 1.4 when the step size iz .2. The
expected level 1s now -.85 (instead of -.92) and the variance is .345 (Instead of
.3%33), Then we should subtract one step size (see Section 10(b)) to compenzate for
effect of step gize on average level. This adjustment glves an estimated level of
-1.05 (= -.85 -.2 = .55 -.5). It is clear that similar adjustments can be made for
any Single Explosion plus m Trials Design and any pair of step sizes. Of course,
sometimes the resulting variance is far from the minimum for a given step size.

Similar characteristics, i. e., expected level for explosion, expected level
for non-explosion{s) and variance, for the other Single Explosion plus m Trials
Degigns are given in Table 19.

Let us now see how effiéient these tests are in terms of accuracy per trial.
In Figure 13 are plotted the accuracies per trial against the levels estimated by
ideal correction (for interval size). The curve that these points spproximate is
roughly the same as the corresponding one for the Cascade Methods. In other words,
the accuracy per trial depends mainly on the level estimated, not on the particular
test. Values forlw6 and sccuracy rer trial are given in Table 20,

The analysis of accuracy per explosion reveals that the Single Explosion plus
m Trisls Designs are in this respect, too, similar to the Cascade Methods. Figure
14 shows the relationship between accuracy per explcsion and "trlals perg” " (see

preceding discussion of Cascade Methods). In this instaence we reglect the asdditional

m trisls in determining "trials pere¢’ “. The points lle approximately or the same
curve a3 we obtained icr the Cascade Methaods The impiicationr iy thal il cre in-

creases the number cof trials per level ard cdecreases the step gsize he will ircreasze

T ££ 3 Teh e 3 P T + 3 E A . .- - LR -~

Tne efficiency in terms of explicelons tco schlieve the Zesireld accuiracy. Valiegs of
LA | - = . e, P R oan T T -~

trizls perg’ ard accuraly per explegsicon are glven In Taple 2¢
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TABLE 19
Characteristics of the Single Explosion
plus m Trials Methods
K=1,m= 1, h =1 k=1, m= 2, h=20
Step|l Expected Expected Level Expected Expected Level
Sizell Level for for Non-Explosion Variance| Level for for Non-Explosion Variance
Bxplosion Explogion
.2 -.36 ~.90 .3400 - hh -1.03 .2980
.5 +.29 -.k5 .4580 +.08 -.76 -3970
1.0 +.95 -.01 .6033 +.56 -.61 L5401
— | —— I CR—— . S — S —— e —
j!‘
k=2, m=1, h=0 k=2, m=2, h=0
Step| Expected Expected Level
Size ] Level for for Non-Explosion Varlance | Expected Expected Level
Explosion Level for for Non-Explosion Variance
Explosion
.2 -.76 -1.21 .2726 ~.179 -1.27 .2532
.5 -.2k -.83 L3650 -.31 ~.96 .3280
1.0 +.23 -.54 L7709 +.13 -.77 L2166
TABLE 20

Values of Mg and Accuracy per Trisl for Single
Explosionr plus m Trials lMethods

.
=1, =%, h=0C |k=', =1, h=1 | k=1, m=2, h=0 | k=2, m=', h=0 | k=2, m=2, b=
Iinterval Mg ACC.; Mé Acc.; Mé Ace./ Mé Acc./ Yé Ace./
Size | Triaz Trizl Trial Trial __Trial
P p— B = ,‘r_l*‘"i = et ————————— E R S e - -
2 R I z7e | =t .32 L2z | <T.E5 ZE5 | =%, £ LEYS -t LER 2z
= -5 Lxu3 | =T L 08 53 BT L z55 | -1 .27 288 |-z 2%
- ~ [ P -1 - —~ - - < - =5 % - -
z L,_ o2 LInk 5 L2 | 7 2EL .30 L2LE L35 LA
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TABLE 21

Values of Trials per ¢’ and Accuracy
per Explosicn for Single Explosion
plus m Trisls Methods

k=1, m=1, h=0| k=1, m=1, h=? | k=1, m=2, h=0| k=2, m=1, h=0| k=2, m=2, h=0

Interval || Trials Acc./ | Trials Acc./ | Trials Acc./ | Trials Acc./ | Trials Acc./
SizeA Apgr_’g’w Exp_.ﬁ per ¢’ Exp. per o’ Exp per ¢’ Exp. |pero  Exp.

2 5 2.40 5 2.45 5 2.37 ] 10 3.1% 10 3.09
.5 2 1.59 2 .l 2 1.56 b 2.11 i 2.06
1.0 1 1.11 1 1.28 1 1.05 2 .47 2 1.4k

S, et oo .

f. Egtimsting the step gize. Since the level estimated depends on the step size

1t 1is desirable to have some practlical way of estimating the step size when it 1s
unknown. This can be done when several tests are made on the game sample of ex-
plosive under the seme condltions. The general ides is that we use the set of
trials to estimate the varlation of the reported level in terms of step sizes and
thereby estimate the step size.

Suppose we have g get of 5 tests. Let us use the sum of deviastions about the
median as our measure of variation. This quantity, which we term the Total Devia-
tion 1s simply the largest level less the smallest added to the difference of the
next largest and next smallest. For the Single kxplosion Scheme pigure 15 gives
the expected value of the total deviation (expressed in step sizes) for different
step sizes.” If we measure the total deviation in terms of steps, it will always
be an integer because each explesion occurs on one of the given levels. Using the
graph In reverse we can estimate the step size from the observed total deviation.

If more than 5 tests are made (say N testsa), compute the total deviation by tsking

the sun of differences of largest and smallest observed lcovels, stc Multiply this
total deviation, expressed In step sizes, by 55%7 to obtain s quantity whose ex-

pected value ls approximately the ssme as the total deviation (in step sizez) in o

Yoo~ . < R 2 2 . 4 1 bl
& When tiio rferiying distribution 19 rearis

<

normai, the tolal devigrtiorn {(for =2

set of 5 csaeg) averages 3.7 tlmes 1he 3usndarc deviasticn,
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On the basls of our estimate of the step size we can then correct the average
level of the 5 tests so as to estimate the 10 per cent point (or sny other point).
Figure 16 shows what the correction to be subtracted should be, both in terms of &’

and in terms of step sizes, for the Single Explosion Dszsign.

11. The Sequential Method.

8. @Genersl discussion. In Section 3 of thig report a “"staglircese® method has been

defined as a method where the severity of the next trial or group of trigls is
directly determined by tihe last trial or group of trigls. For sach method which
has been discussed up to this point a rule of procedure has been given which, when
carried through to the completion of the test, determined the characteristics of
the estimated percentage point. These rules of procedure have been chosen becsuse
they furnish an estimsted percentage point in an efficient memmer, efficiency re-
ferring to the criteria of accuracy per triel, sccuracy per explosion, or weighted
accuracy. No particular attention has been paid to what the method accomplishes
at a fixed level,

A systematic, rather than empirical, approach to the problem can be obtained by
focusing attention primarily upon the relstion between the results of testing at a
given level and the percentage point which 1s to be estimated. Clearly the level
corresponding to the desired percentage point must elther (1) be above the level at
which the testing 1s taking place, (2) 1lie on the test level, or (3) lie below the
test level. Now if a reasonable criterion can be obtalned which will distinguish
between these three possibilities upon the basis of trials made at the level, then
testing at successive levels will give directly usable evidence concerning the de-
gired percentage point. For suppose that at level x, the criterion indicstes that
the desired level is sbove level x. Then if testing is done at level x + 8§ and
the criterion indlcates that the desired level 1s below this level, there is evidence
that the deslred level is between levels x and x + §

There are certain rather obvicus ways in which such a criterion can be arrived
at. For exsmple, one might simply carry out ten (or auny other fixed number of )
trials on a level and calculate the per cent explosions. If this experimental per-
centage were lower thsn the desired percentage, the next ten trials would be con-

ducted on the next higher level. If it were lower, the next .en trisls would be
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1.
conducted on the next lower level. This procudure would then he continued until the
first time that the results on one level indicated that the deslred percentage point
was above this level, and the results on the next higher level indicated that the
desired percentage point was below thig level. Ifor the momént the actual level
assigned to the desired percentage will be neglected, although 1t would necessarily
be -taken between the two finsl levels. It should be noticed that this procodure is
relsted to the stendardized Picatimmy Method.

Once the number of trials to be used on a level has been determined, the pro-
bability can be calculated that any particular decision will be obtained on a speci-
fied level. Thus, if the number of trials made on & level 1s ten, the probsbility
of an explosion on & level 1a Py and the 15 per cent point is to -be estimated, then
the probebility is (1-p,)'% + 10(1-p, )9pX that the criterion tells us to go up a
level after 10 trials on level x. Similsrly, the probability that the criterion
tells us to go down one level is 1 - (1=px)10 - 10(1"px)gpx. In this exsuple there
is no provision mede for saying that the level tested corresponds to the 15 per cent
point, end so the probebllity of thils decision 1ls zero. The probsbllity that the
declslon will be to move up one level is graphed ss & functlon of Py in Flgurse 17.
Thls curve 1s ordinarlily called the Operating Charascteristic Curve or the Operating
Characteriastic (abbreviated OC Curve or OC). Once the 0C for a criterion requiring
a fixed number of trisls at s level has been determined it 1s possible to compute
the aversge number of trisls required to complete one determination of & desired
perceniage point, snd siso the varisunce of this estiimste.

It 1s asppasrent from the OC glven in Figure 17 that at s single level one may
commit one of two errors. RFirst, if the testing 1s belng done at a level where Py
is less than .15, there ls a probability of moving down one level when one should
be moving up a level, and second, 1f testing is being done at s level where Py is
grester than .15, there 1s a probabllity of moving up one level when one should be
moving down a level. These errora wonld bhoth be gzero 1f the O had the valve one
for all values of Py lesa than .15 and zero for all vsliues of Dy greater than .15,
However, such & curve could only be produced by setting up a plan with en infinite
nuber of trilals. Accordingly it is customary to describe such & plan as thig by
choosing & value p, less than .13 and & value b, greater than .15, and specifying
the probability that the fipst type of error will be nede if P, = P, and the pro-

batility that the sscond type of error will be made if by = P

~
g
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fMigure 17

Probability of Moving to Level x+& After Mesking
Ten Trisls on Level x

(see text for description of test procedure)
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Thus, if testing is being done at a level where Py = Pys the probsbility of
an error 1ls designsted by =f, and if testing 1s being done at a level where I
the probability of an error is designated by;§ . Tor Py 4 D, the probability of an
errcr is less than of , and for p, » p, the probability of an error is less than /B .
It should be noted that in thls particular, simple example (for glven p, and p2) the
choice of n (the number of trlals made on & level) determines bothef and £ , or the
cholce of one of e{ and # , determines the other and also n.

The discussion of thig method has 11lustrated the considerations which must
enter Into the choice of s final methcd. However, this particular one 1s very in-
efficient for the task at hand becsuse it requires s lsrge number of trials to com-
plete one determination of the desired percentege point. Now 1t is z well known
emplrical result In sampling theory that 1f one specifles an 0C by fixling values of
Pys Py el and ﬁ?, then there are many criteris which epproximstely meet this speci-
fication. All crlterls which have the same Py, p2,tﬂ and /? will, in a sense, esti-
mete a fixed percentage point with the same sccuracy, but the average number of
trisls required will be differsnt for the different criteria. In the présent situs-
tion, it would be desirable to use the criterion which uses the smallest average
number of trials.

b. Sequential Probgbility Ratio Plsn. There 1s one sampling plan sgvallable for

use in developing & method which approsches this propérty of minimum average number
of trials. This 1s the Sequential Probability Ratio Sampling Plan as described by
Wald in the Journal of the American Statigtical Assoc;ation,'Vol. 4o, No. 231, pp.

277-306. The statement is made that this plan has the property that the average
number of trials required to reach g decision concerning the location of the desired
percentage polnt 1s minimired simultaneously st the two levels for which P, = P,
and P,- In general, 1t will not be possible to obtain a criterion which requires
the smallest number of trisls for all values of Py

The distinguishing characteristic of the Sequential Probability Ratio Sampling
Plan is that it does not require s fixed number of trials to reach a decislion. 1In-
stead 1t gives s decision on a two way alternative 83 scon as enough eviderce has
been accumilated to meke the probhabilitles assoclated with the twc types of errcr

less thsan or equal toof and F . The spplication here may be dezscribed as follows.
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It is desired to estimate the level at which the probablility cf an explosion is p.
On the basis of certain considerstions with respect to accuracy end number of trials,
vglues for Pis Py o and £ will be chosen. D, is less than p, and Py 1s greater
than p. Once these constants have been chosen, reference to Wald's paper enables
one to compute two sequences of integers Ups Uy ui, ... and d1, d2, d3, «:ve  (The
subscripts refer to the accumulsted number of trials on a particular level.)

Now suppose testing is being done on level X and that it is necessary to de-
cide on the basis of trigls whether ihe level corresponding to p is above X, below
X, or is nearly identical with x. As the testing is carried ocut on this level, a
record is made of the trial number (n) and the total number of explosions which have
been obtailned in these n trials. After each trial the number of explosions is com-
pared with the two sequences above. If, at any polnt in the testing, the number of
explosions in n trials becomes equsa’ to s testing 1s discontinued and the state-
ment is made that the level corresponding to p 1s above x. On the other hand, if
the number of explosions in n trials becomes equsl to dn, testing is discontinued
and the statement s made that the level corresponding to p is below x. As long as
neither of these decisions is obtsined, testing is continued.

This entlre procedure may be stated more preclsely as follows:

For each value of n (trial number) we determine

w, = A + B'n and
dn = C + B-'n where
<]
1ogT:&
A =
1o Eg -1 gligg
gp‘. © 1-D,
t-p,
logr=p
B =_ T, TF, and
iog=— - legs
*p. P
S 4
C = IR~ 4
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If Wy is not an integer, we replace 1t by the largest integer less than .
S3imilarly, if d, is not an integer, we replace 1t by the smallegt Integer
which 1s greater than dn' Now 1f we are testing on level x, we continue

meking an sdditional trial as long as € s the number of explosions in n

trisls, satisfies v, '4 en £ dn‘ If for gsome value n we have €L g W,s then
we discontinue testing on level x and move to level x +4& . If for some

valuse n we have en‘z dn’ then we dliscontinue testing on level x and move to

level x- & . When the per cent polint has been bracketed we stop.

If this procedure 1s applied to a level x as described above, a declislon one
way or the other will eventually be reached. The number of trials required to
reach'this decision will vary from test to tegst, and may, at times, become quite
large. For this reason it has been desirable in the pregsent application to decide
upon 2 maximum number of trials which are to be taken at any one level. If this
number of trials is performed on a level with no decision being reached, the state-
ment will be made that the desired percentage point lies on thls level. This pro-
cess of truncation means that the nominal values of of and [3 are not, in fact, the
exsct risks. However, for the sake of convenience & and ﬁ? will be used as re- .
ferring to the truncated procedure as well as the untruncated procedure in deter-
mining the u, and dn sequences.

As far as procedure ls concerned, there is only one additlonal step to be
considered. If one should start testing on o level quite far removed from the
level corresponding to the desired percentage, the Sequential procedure would prove
quite costly with respect to total number of trigls. For this reason, some one of
the simple "staircase" methods should be used to locate a level at which to begin
the detailed sequential procedure. Emplirical experience with the type of sequential
procedure described below suggests that the accuracy of the final level is nearly
independent of where the detailed sequential procedure is started.

In order to illustrate the type of design which is obtained from these genersl
considerations, let us suppose that we desire to estlimate the i2 per cent point.

p, will be taken as .08, p, as .16, of a3 .25 and /? a3 .25. Furthermore, no more
than thirteen trials will ever be made on a singie level. This is the Sequentiasl
Plan which 1s recommended in the genersl part of this report for the estimation of

the 12 per cent point. Then the operator's Instructions will read as follows:
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(1). Start at a level where almost no explogions are expected,

(2). 1If no explogion is obtained in two trials, move up one gstep. Continue
to move up after each pair of trials untll the first explosion occurs.

(3). After the first explosion, continue to test at this level using the fol-
lowing procedure (disregarding the tests already made):

a. If two explosions are obtained out of 2, 3, L4, or 5 trials move
down one step as scon ag the second explosion is obtained.

b. If three explosions are obtained out of 7, 8, 9, 10, 11, 12 or 13
trials move down one step as goon g8 the third explosion occurs.

¢. If thirteen trials are made without obtaining an explosion move up
one step.

d. If no move (as Indicated by a, b, or c) has been made at the end
of thirteen trials, discontinue testing.

{(4). As lorg as no decision of type 3(d) is obtained, continue to move up or
down as indicated by 3(a), 3(b), or 3{(c). Discontinue testing when a
decision of type 3(c) follows s decision of type 3(a) or 3(b), or when
a decision of type 3(a) or 3{(b) follows a decision of type 3(c).

{5). Record:

a, The level at which a decislon of type 3(d) has been obtained, or
b. The midpoint of the last two levelsa at which testing occurred when
Lesling lus been disconbinuced as in {4).

The recorded level estimates the approximate 12 per cent point.

It will be noted that this procedure starts with a Single Explosion (two trials on
a level) Design.

Investigations have been conducted to see whether certain other interpolstion
achemes could not be substituted for (5) above which would reduce the variance of
estimasted percentage point. o scheme was discovered which would make any signiii-
cant reduction in this vsriance.

The design pailtern for a Sequential Test such as outlined above 1s determined
by fixing vaiues of Pys Pas ol , ﬁ3, and the maximum nunber of trlals to be ugsed on
any cne level. 1Irn order ¢ obtain scme Indicatlion of the way in which values ghould

be assigred to thege varisbles, certain computaticre have beern carried out cn the
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agsumption that a cumulstive normal distribution represents the probsbility of ex-
plosion as a functicon of height of test. As in the previous sections, the liccation
of the levels at which tests are to be made will be measured in terms of ¢, the
standard deviation of ths sssumcd norix
cent explosions are expected will be taken as the origin of this scale of measure-
ment.

In all the computations which follow, p, is always teken as .08 and p, os .16,
In general, increasing p, and decreazing P, (for fixedof and £ ) will have the ssme

effect as decreasing of and 8 .
c. Effect of changes in of and Z . The fundamental Ilnvestigation concerning the

choice of o, 3, and the point at which truncation occurs will be conducted for an
interval size of .5¢" . Consequently the levels at which testing occurs are -2.5¢°,
-2.0¢°, -1.5¢", -1.0¢", -.50’, 0, +.5¢’, etc. In what follows the ¢ will be under-
stood even though 1t is not explicitly written down. There 1s no g priori reason
for supposiné that ={ should be taken equal toﬂ ; but in order to simplify the
computations this assumption is made, except for two cases contalned in Table 22.
Furthermore, each Sequential Scheme wlll be preceded by a Single Explosion (two
trials on a level) Design as given in our illustrative example for & = £ = .25,
p, = .08, p, = .16, and truncation at 13 trials. For the computations, it was

assumed that testing started at -z2.5¢g’.
The £irst set of computations '.-;crc‘madc for of = ﬁ = 15, 4 = A _ .2C,

o = 8 = .25and & = B = .30. In each instance truncation was made at approxi-
mately the same number of trials slthough scme variation was allowed because of the
rarticular characteristics of each plan. In computing the expected valus and the
variance of the estimated percentage point, the estimate of the percentage point for
each repetition of the test was taken as in {5) of the representative plan given in
this secticn. The pertinent data obtained from this investigaticn are given ir

Table z:Z.
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TABLE 22

Summary of Results for Sequentisl Methods
at Interval 8lze of .50

. (1) (2) {(3) (&) (5) (6) (7) (8)
d=p8= .15 33 trials -1.18 L0738 6C.5 9.2 224 1.47 .889
o =4 = .20 55 trials ~1.1 0732 56.9 8.4 .2ho 1.63 - .971
o = f8 .25 32 trials -1.17 .0883 hg.7 7.1 227 1.59 .9%8
of =3 = .30 24 trials -1.1% L1134 ho.3 6.1 .208 1.45 .854
;j: ‘gg 30 trials ~-1.11 . 0907 bt.7 T.2 232 1.53 .921
‘;: '28 33 trisls -1.21 . 0884 51.2 7.0 . 000 1.61 .935

(1) Process Truncated at

(2) Expected Value of Estimsted Point
(3) Variance of Estimsted Point

(%) Average Number of Trials

(5) Average Number of Explosions

(6) Accuracy per trial

(7) Accuracy per Explosion

(8) Weighted Accuracy

-

An examination of this table shows that the accuracy per trial, the accuracy
per explosion and the weighted accuracy assume maximum values for o (=4 ) between
.15 and .30. The variation in these criteria for « (=) between these limits 1is
not very large, and we have chosen to take o{(=p8) = .25 for the remainder of the
investigation. It is to be noted that as (=) increases from .15 to .30, the
average number of trials and explozions decrease while the variance of the estimszed

percentgge point increases. The expected value of the estimated percentage peint

varies only from -'.:8 (corresponding to 1.5 per cént) te -1.74 (corresponéing to
teé.” per cent}. 1f the differerce in point of truncation ie taken into account,
{t is seer that the results for & = .20, /B = .30 and & = 3¢, A= .20 glve ap-
rroximately the same ressits as o&{=/3) = .25 except thai the expected values for
the estimated perceniage point zhow olizh*tly more waristicn

E I N e O PA S e e S
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d. EBffect of point of truncation. Let us now examine the effect of truncastion on -

the Sequential Method for o((=/@) = ,25. A summary of the regsults obtained is .

given in Table 23.

TABLE 23

Effect of Truncation on Sequential Method
at Interval Size of .5g

(o{ =ﬂ = .25, p1 = .08, p2 = 316)

Expected Varlance

Process | Value of of ﬁgerg%e ggergge Acgggacy Ac;:g&cy‘ Weighted

Truncated | Estimated Estimated : Y Accurac
at Point Point Trials Explosions Trial Explosion uracy

32 triagls ~-1.17 .0883 4q.7

7.1 .227 1.59 .938
23 trials -1.16 . 0952 43,5 6.4 .2h0 1.64 .978
13 trials -1.11 L1249 32.0 5.0 250 1.60 .976

This table indicates that the accuracy per explosion and the weighted accuracy

assume maximum vslues for truncation between 13 and 32 trisls. However, the actusl

advantage of any one part of this range over any other sppears to be very slight.

The accuracy per tripl 1g Increasing over this range. As one truncateg at s smaller

number of trials, the average number of trials reguired for a determination of the

percentage point decreases while the variance of the estlmate incresses. Within

this range of truncation the expected value of the estimated percentage polnt varies

from -1.17 (corresponding to 12.1 per cent) to -1.11 (corresponding to 13.4 per cent).
Upon the basis of the data presented in Tables 22 and 23, the general part of

this report recommended the use of the Sequentisl Methcd with o((=/3) = .25, p, = .08,

p, = .16 and truncation at 13 trials for the estimstion of the 12 per cent point.

It is true that truncation at 23 trials would give slightly larger values for the

efficlency criteria, but the greater s3implicity achieved by truncatlion at 13 triasls E

cutweighs this gain. Operstor instructicns for this method are glven in the general :

part and are repeated in thisz sectlor gz an 1liustrstion.
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e. Effect of change in interval size. As a final step we have investigated the

stability of this method with respect to changes in interval size. The results

obtained are given in Table 2i,

TABLE 24

Effect of Interval Size on Sequential Method

(el= p = .25, p, = .08, p, = .16)
Truncation at 13 Trials
Expected Varlance
Interval ] Value of of Average  Average Accuracy Accuracy

Size Estimasted Estimated No. of No. of per per Weighted
Point Point Trials Explosiong Trial Explosion Accuracy

.2 -1.19 . 1292 40.8 ko .190 1.89 .946

.5 -1.11 .12hk9 32.8 5.0 .250 1.60 ) .976

1.0 -1.21 .1823 25.6 .8 .21k 1.1k .7h5

From this table the following observations can be made:

(1). PFor interval sizes ranging between .2¢" and 1.0¢’ , the expected value
of the estimated percentage point varies only from -1.11 (corresponding
to 13.4 per cent) to -1.21 (corresponding to 11.3 per cent).

(2). PFor maximum accuracy per trisl an interval sirze of about .5¢ should be
used.

(3). The average number of expleosions tends to increase as the step size
increases.

{4). The average number of trials decreases ss the step size increases.

For this particular method, it makes very little difference where the testing levels

are located with respect to the underlying distrlbution. Thus for an interval size

of 1.06" , the expected value of the estimated percentage point is -i.21 if testing
starts at -2.50¢" (test levels being -2.5¢" , -1.5¢& , -.567 , + .50 , etc.) and
1,16 1if testing atarts st -3.0¢” (teatr levels now being -3.0¢” , -2.00° , -1.0¢ ,

2, + V.o, etc.).
In thig section we hsve rnot shown how to compute the resvits of the use of g

Seqguential Flan. These Zetsalls wilil be discuzzed in the section om Seguentlal Methoda

LIRS+ [ R At ae e g
STh SIILLTETIOr.84 TOorvalhL TLLE resctrl.
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12. The Pursult Method.

The Pursuit Method was devised to reduce the effect of the assumption of normsl-
ity. This method can be illustrated by considering its application to the estimate
of the 10 per cent point. Its distingulshing characteristics are that

(i). 1t requires a predetermined number of triala, and

(i1). it attempts to concentrate the trigls on the two levels between which the

10 per cent point lies.

We proceed as follows:

After a trial has been performed on a level, compute the per cent ex-
plosions on thils level, taking into account gll trials which have been made on

this level.
If this percentage 1s less than 10 per cent, make the next trial on the

next higher. level.
If this percentage 1s greaster than 10 per cent, make the next trial on the

next lower level.
If this percentage i3 equal to 10 per cent, mske the next trial on the

same level.
Continue in this fashion until the fixed number of trials have been made.
Estimate the 10 per cent point by using linear interpolation on the two
levels which bracket the 10 per cent point.
This method has been investigated by experimental procedures, as explained in
Section 24, and the results are summarized in Tsble 25. Simllar experimental pro-

cedures can be gpplied to investigate any proposed method.
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TABLE 25

Results Obtained by Using the Pursult Method
to Estimate the 10 per cent Point

{(Interval size .5¢ ; PFlrst trial at -3.0)

Noumber Avergge Accurscy Accurscy
of No. of Average per per Welghted
Trials Explosions Level Varlance rial Explosion Accuracy
25 .5 -1.1h .18k9 .216 1.20 LT3
50 7.6 -1.30 .0961 .208 1.37 . 826
100 13.6 =1.39 .0576 17k 1.28 . 736

# TEach value in thisg table is based upon a set of 40 experimental tests.

For details, see Sectlon 2k.

A comparison of the values given in thils table for accuracy per trlal, sccuracy
per explosion and weighted accuracy, with those obtained from the other methods under
similar conditions, seems to indicate that the Pursult Method 1s not as efficient as
the others. For example, at interval gize .50” the NPFI Method (Table 13) glves
.308 for accuracy per trial, 1.60 for accurscy per explosion and 1.06 for weighted
accuracy. The Sequential Method (Table 24) gives .250 for accuraly per trlal, 1.60

for sccurascy per explosion and .976 for welghted accuracy.

13, The Picatlinny Method.

The method used at the Plcatinny Arsensl differs from the others In one im-
portant respect in that the operator is given g large degree of cholce in the exact
procedure followed. As in all other procedures a set of levels (equally spaced Iin
gome scale) is taken. Ten trials are made on each level which 1s chosen for use in
s gpeclfic test. The aim of the procedure is to obtain results on two congecutive
levels such that there is no explosion on the lower of Fhese two levels and there

is at least one on the upper. The upper of these two lévels 13 reported.
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An example will 11lustrate the method. Bupposse that the set of levels taken
ig -3.0, -2.5, -2.0, ..., 1.0. The first ten trlals are msde st -3.0 and no ex-
plosions result. The operator then decides he is below the "10 per cent point™ ang
beginsg to meke ten trigls at +.5. When an explosion occurs on the fifth trisl, he
decides he 13 above the 10 per cent point. The third set of 10 trials ls made at
~2.0 and no explosions occur. The operator decldes to move up and make ten trials
at -1.5. When an explosion occurs on the eighth trial the test ls finished and
41.5 1s reportsd.

It is clear that the number of trials for the test depends on the operstor.

If he is not skillful in successively braketing his end point, a very large number
of trials will be required. Not only the number of trials, but also the accuracy
and the per cent point estimsted depend on the exact sequence of operations.

To obtaln any numerical results concerning the Plcsiinny Method it has been
necessary to standardilze the procedure. It hss been assumed that if there is no
explosion on the first level at which trials are made then the operator tests on
each successive higher level untll an explosion occurs. If there i3 an explosion on
the firgt test level he tests successively on lower levels until he obtains ten non-
explosions on & level.

If the test starts at -4.0 and proceeds upward by steps of .5, the 7 per cent
point is estimated with a varlance of .290. Since the number of explosions is one,
the accuracy per explosion i1s 3.45. This value compares favorably with other tests
guch as NPF (1.61) snd the Single Explosion (1.77 at step size 0.5 and 3.40 at 10
trials per ¢ ). The average number of triasls is 55.4%, hence, the sccuracy par
trial 1s extremely small, nawmely .062. If the test were started at -2.5 ghout 29.9
trlals would be ssved, but the variance would change only slightly. Then the ac-
curacy per trial would be .135.

An alternatlve standardizstion of the procedure 1s to start where there is 2
negligible possibility of 10 successive non-explosions and then proceed dowrwards.
Starting at +.5 and using steps of .5 one estimates the 13 per cent polnt, and the
variance 1s .471. The number of trlals required on the gversge is 22.1. The sccur-
acy per trial is .096. This figure is lower than:when one starts at -2.5. The

averasge number of exploslions 13 4.26 and the accuracy per explosion is .h99,
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It should be observed that the Picatlinny Method, when standardized to start
where there agre practically no explosions, is simply a Single Explosion Design with
10 trials per level. As pointed out In Section 9 the accuracy pef explogion in-

creagses as the number of trisgls per level incresses, while the accuracy per trial

decreases.

14, The Up and Down Method.

a. Introduction. The Up end Down Design and statisticsl analysils were deviged for

the purpose of estimating the 50 per cent point and the standard devistion (&) of
the assumed underlying normal distributicn. Since the normal distribution is com-
pletely specified by the 50 per cent point (or mean) end standard deviation, it is
obvious that one can estimate any percentage point on the hasis of the estimates of
the 50 per cent point and the standard devistion. In the present section we shall
gtudy the accuracy of this natursl method of estimgtion.

b. The method of estimation. 1In assuming a normal curve, we sssumed

so that knowledge of «« and ¢ would allow the calculation of the x corresponding to

given p from
X=/4A.+k6‘,

where

q(k).

it

P

The Up and Down Method” producos an estimate m oj/g& and an estimate of s of ¢, so

the natural estimste of x 1s

m + ks.

Valueg of k + 5.000 are given in Figher and Yates, $tatistical Tables, under the

neme of "Problita™.

4+ AMP Report No. 101.1R indicates how to obtain these estimates.
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¢. Accursecy. Sampling error in our estimate of the p per cent point arises be-
cguse of the sempling error in m and s. 8ince the sampling errors of m end s de-
pend on the step size as well as on the number of trisls, our estiweie of the p
per cent polnt does too. Flgure 18 indicates the standard devistion of m (@;) for
a sample of 50; Flgure 19 gives the standard deviation of g (@;) for s sample of 50.
Por example, if the step size 1s 1.5 (in ¢ ) then cfm is .215 and éi is .256,

Since the estimates of _»« and ¢ gre nearly statistically independent the atand-

ard deviation of m + k-8 is spproximately

2 2,2
G"m-#k 6’8 s

where cﬁm and 6; are the standard deviations of m and s, respectively. From this
expresaion it 1s clear that the standard deviation of m + k°s increases with k; that
is, the farther from the 50 pef cent point the p per cent point is, the greater is
the sampling error. For a sample size of 50 and Interval slze of 1.5 the standard

deviatlion 1is

/.oh62 + K2(.0655)

For any sample size (and interval slze of 1.5) the accuracy per trial 1s

1//(2.312 + k2-3.276). This expression 1s graphed againat k in Figure 20, The
accuracy per trial for the estimation of the 25 per cent point 1is .26; the accuracy
per trial for the estimation of the 10 per cent point is .13. The latter figure is
somewhat lower than the accuracy per trial for some other methods. For per cent

points smaller than 10 per cent, thls estimate Eecomes much more inaccurate.
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Figure 18

Standard Deviastion of the 50 per cent Point
Estimated by the Up and Down Method
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(Sample of 50)

Standard Devliatlon of the Estlimate of the
Population ¢ by the Up and Down Method
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Accuracy per Trigl for Up and Down Method
(Interval gsize of 1.5 ¢ )
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Also included on Figure 20 1s g curve which represents our estimate of the
accuracy per trial for any sample size and for intervgl size of 1.5, when one con-
giders that m + k-s are estimated simultaneously. The equation of this curve is

given by

o - pP

2.312 + k2-5.276

where r 1ls the correlatlion between m + k+s and m - k-g. r 1is given by the ex-

pression
2
o
1 - k2 2
cfm
2
o4
1+ k2 2 '
cfm

On the average one half of the trials will be explosions. Hence, the accuracy
per sxplosion will be twice the accuracy per trial, namely, 1//(1.156 + k2-1.658).

This method 1s peculisr in that the msximum sccuracy per explosion is at the
50 per cent point, where it is .865. However, at the 25 per cent point (accuracy
per explosion .519) it 1s more economical In explosions to use some other method.

Since the weighting of o, and a; depends on the value of X the best step
size for estimsting m + k-9 varies‘ﬁith.g. One of these standard deviations (c{m)
increases with increasing step size, whille the other ( aé) decreases. Therefore,
the accuracy per triasl is increased for small k if the interval size is decreased.
Table 26 gives the accurascy per trial for four different step sizes and 4 values

of k.
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TABLE 26

Accuracy per Trial for Up and Down Method

kK\Step Size .2 .5 1,0 1.5
0.0 .608 .566 .55 b33
5 .199 . 305 +336 «319

.7 121 .21 .257 . 255
1,0 066 .128 172 .179

No larger step size than 1.5 1s taken because beyond that point cﬂh and og
depend on the relation between st and the levels at which the testing is carried
out. If the true mean falls midway between two testing levels, cﬁ; increases as &
increases, while cﬁ decreages slightly. However, 1f the true mean falls on a
level both standsrd deviations Incresse. 8ince one would seldom be certain of the
relationship betweenyﬁm and the testing level, 1t 1s better to use g step size no
greater than 1.5,

Table 26 shows that beyond a k of about .75 it is more efficient to use & step
size of 1.5 than any smsaller although the difference between the accuracy per trial
for 1.5 and 1.0 is very slight over the range k = .5 to k = 1.0. In genersl, for
gmall values of x accuracy per trial is quite insensitive to changes in step size.
Roughly speaking, the step siZe indicated is as follcws:

(1). To estimate per cent points from 4k per cent to 56 per cent use s step

of about .z2.

(2). To estimate per cent points from 37 per cent to 4k per cent and 56 per

cent to 63 per cent use a step of about .5.
{3). To estimate per cent points from 24 per cent to 37 per cent and 63 per
cent to 76 per cent use a step Of about 1.0.
(&) To estimate per cent points less than 24 per cent and greater than 76
per cent use g step size of about 1.5 and no larger.
For per cent points rniear 50 per cent one can obtain greater eificlency than indicated

¢ gshows the Improvement in efficiency in terme cf accuracy per

n
-

by Figure 20. Table

trial by choosling smaller atep slzes when per cent points near 50 per cent are ts be
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estimagted. The maximum incresse in accuracy per trial over the values given in

Flgure 20 is 27 per cent (at the 50 per cent point).

d. Confildence intervals. From Figures 18 and 19 one can compute gﬁr and g@ Tor

a gample of 50 and hence the standard deviation of m + k-3 (=y, say) which ig

oG i

If the sample is of size N instesd of 50 multiply the standard deviation for 50 by
v/;37§’ to obtaln the corresponding standard deviation for g sample of size N. For
reagsconably large samples we may regard y as normally dlstributed with mean of the
per cent boint estimated and standard deviation as conputed (say«f&). For smaller
samples, however, we can meke a.correctlon for lack of normality (see AMP Report
No. 101.1R, pp. 20, 21). The statement about confidence intervals can be msde as
follows: The true value of the number estimated by y will, on the average, lie

between the two numbers
- N+2.4
Y - 1.96 S oy

and

y+1t96 N y

95 times out of 10C. . The 99 per cent confidence interval ls (y - 2.58 E$§43<§%,
¥y + 2.58 ﬂi%%ﬁicfy).

e. Compsrison with other methods. This method of estimatlon depends strongly on the

agssumption of normglity. The farther from 50 per cent 1ls the per cent point esti-
msted, iLhe greater 1ls the dependence on this sssumption.

The Up snd Down Method can as easily be used to estimate both a high and low
per cent polnt a3 to estimate mersly one. Hence, it may be more efficient to use
this than one of the other methods when one wishes to estimate two or more points.

The efficiency for one point is rather low. For example, the accurascy per

trial for an estimate of -.7 (in terms of & )} 13 sbout- .26. On the other hand the
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Single Explosion Method with step size. .7 estimsates gpproximsetely the same point
{(when properly corrected for interval size) with an accuracy per trial of glightly
less than .33.

Suppose that one estimates -1.0 and 1.0 by these two methods (using the Single
Explosion Method inverted for 1.0). The accuracy per trial for the Up and Down
method *s .35 and for the Single Explosion Method (intervsl size .5) is .16. If the
points are farther away from 0, and only one point 1s desired, then methods'other
than the Up and Down are better. For example, for the 10 per cent point the accur-
acy per trial for the Up and Down is asbout .13 but for the NPF 13 about .16.

15, Fubture Research in Methods.

Since it is not possible:to foresee all the useful developments of the future,
the purpose of this section can only be to outline some apparently promising direc-
tions of study. In some cases it 1s sasy to point out exactly what computatlions
need to be done, while in others we can only indicate a goal. The following pars-
grapns indicate as far as possible goals, methods and motivations.

a. Number of trials. Any stalrcase method 1s well adapted to sensitivity testing

where (1) preparation of the sample is easy and (i1l) the time to conduct (and ob-
serve) one trisl 1s short. However, such methods as the Up and Down are equally
well applicable to situations where preparation is lengthy and where, for efficiency,
8 chosen number of samples should be prepared at once. This convenience can be
ssgoclated either with on advance knowledge of the number of trials which a test
will require or with sn efficlent enslysis of tests which have been terminsted st g
fixed number of trials. Clearly the development of highly efficlent tests for the
10 per cent and 90 per cent polnts where the number of trials, gt least within very
narrov limits, can be predlcted 1n advance, or where the tests can be efficiently
anglyzed when terminated at an arbiltrsry point, would be desirable. Work under i,
g, h and i below will be relevant.

b. Corrections for curvature. The methods recommended in this report suffer most

from curvature of the per cent point estimated as g fumetion of interval slze. The
present types of adjustment deal with curvature only st the end of the test, and

rather crudely. The following questions require attention:
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(1). Can better procedures to correct for curvature be devised?
(1i). Can simple methods be found whlch are affected leas by curvature than the

methods of this report?

¢. Confidence intervals. When the recommended methods are applied to a case where

the assumption of normality holds, it 1is possible to compute confidence intervals.
These are only known for the Up and Down Method. More study here would be usaful.

d. Ways of testing normglity. How can the assumption of normality be efficiently

tested? Comparison of results of the NPF Inverted and thc Up and Down Method for
the 10 per cent point has been suggested. How good is such a test? How should its
results bhe interpretedf’ Are therse better wags:9

e. Non-normsl operation. How do the means and variabllities of the recommended

methods change when the sensitivity curve is not normal ? Some information exists,

but not nearly sncugh.
f. Block Up and Down Methods. Various Up and Down Methods utilizing blocks of

trials and not single trials can be easlily devised. For example,
(1). make 3 trials at a level, go up 1f 0 or 1 explosions, go down if 2 or 3
explosions,
{1i). make trials at a level, going up at the first non-explosion, golng down
at the third explosion (proposed by NPF).
We need to know the means and accuracles per trigl asgociated with gseveral such
methods, and s&lso the best methods of analysis.

g. Varigble Interval Methods. The possibility of using smsller and smaller inter-’

vals as the trials proceed clearly saves a few trials which would otherwise be lost
in finding the approximate level desired. This 1s particularly clear for Cascade
Methods. Are there other ga.ins."s How much do they amount to?

h. Multiple Cascade Methods. 1In this report, most Cascade Methods are applied for

one or two up sequences. The prominent exception is the Up and Down Method which
can be regarded as a Cascade Method with g large (20 or more) variable number of up
and down sequences. Intermediate caseg reed to be studied to assess the effect of
stgriing cver on efficiency.

1. Other Sequern:iisl Methods. Clearly Seguertisl Methode for other per cent points

and with other accuracles deserve atudy.
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j. Investigation of boundaries. Section ¢ contalns some informal hunches as to the

permanent limitations of staircase methods. 1If possible, these hunches should be
replaced by knowledge. It 1s probable that detailed information about many more
individual methods is needed before a general study can be profitably completed.

k. Differential effects of interval glze. In this report, effects of interval size

have been assessed by calculating means for, say, three interval sizes, drawing a
curve and determining a correction graphically. As noted in Section 8 it 13 easy to
compute a differential correction numerically (i. e., one which holds for & between
50 and 55 + d§ ), and it seems likely that the use of such tangential estimstes
would help in understanding the situation and in sclving probiem j.

1. Variable length-accuracy. A problem of both practical and theoretical interest

is posed by the methods, such as the NPF, which involve g variable number of trials.
When few trials are required, ls the result more or less accurate than on the ‘aver-
age!

m. Delayed Staircase Methods. In many cases of sensitivity testing, e. g., heat

stability, it 1s necessary to wait a substantial time for the conclusion of the
test. Delayed staircase methods would be applicable, &. g., and Up and Down Method
where the level for the N + 11ta trial depended on the result of the Nth trial.

n. Variable number of trials per level. What would be the characteristics of Cas-

cade Methods in which the number of trials per level increased by a certain number

t which teating cecnrred !

~
o aal -
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IIT. COMPUTATION

16, Introduction.

The quantities sssociated with the distribution of a sensitivity test result
which are relevant to our snalysis are (1) the expected level reported, (2) the
varlance of the reported level, (3) the average number of trials, and (4) the aver-

age number of explosions. In many cases, of course, other quantities were also

computed.

17. General Assumptions.

All computations are based on the assumptior that the sensitivity curve is a
cumulative normsl curve. The natural scale of measurement of the levels 1s in terms
of the standard deviation of this normel distribution. We have modifled this agsump-
tion to the extent that at -3.0 (and lower) the probabllity of an explosion is tsken
to be zero and gt +3.0 (and higher) the probabllity of an explosion is taken to be
unity. For our purposes this modification 1s unimportent, for relatively few trials
in any test procedure would be made at -3 or lower, or at +3 or higher, and hence,
the distributions of test procedures with the modification of the cumulative normsgl
curve differs 1ittle from that without the modification. The computations are
simplified by assuming a finite range. We shall let p be the probability of an
explosion on level x, and Qy be the probsblility of a non-explosion (=1-px).

Most of the test procedures require starting the test st a level where the
probabllity of an explosion (or in some cases, of a non-explosion) 1s nearly Zero.

In our computations we have genersglly started at -2.5 (or +2.5).

18. BSingle Explosion Design.
Perhaps the simplest design to treat is the 8ingle Exploslon Design with single

trials on a level. The probasbility of the explosion occurring st level X is the
product of the probability of a trisl beilng made at x, and the probsbility that a
trial at level x results in an explosion. For example, the probsbility of the ex-
plésion occurring st -2.5 is .00€21, at -~2.0 fa (1 ~-.00621) - .02275 = ,0226%1, and
at -1.5 i (1 -.CD€21) - (1 -.02275). .0658) = .06488. Table 27 gives the pro-

bability, P(x}, of the level at which the explcozlion cccurs with step glzes of .5¢ .
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TABLE 27

Probablility Distribution for the
Aingle Explosion Design

Level Py Qe Probability, P(x)
~2.5 .00621 .99379 . 006
-2.0 .02275 .97725 .023
1.5 .06681 .93319 065
-1.0 .15866 L8413 ‘ L1k
-0.5 L3085 69146 .235

0.0 50000 .50000 264
0.5 69146 , .30854 . 182
1.0 .8413h . 15866 .068
1.5 .93319 . 06681 L0112
2.0 .97725 .02275 . 001
2.5 < 99379 . 00621 . 000

From this distribution one computes the expected value (-.2410)} and the variance

{.565) of the reported level, where E(x) =Zx P(x) and o;f = ZxQP(x} - [E(x)]2.
X X

Because the number of trisls depends only on where the explosions occur, the average

number of trials, T(x), is a simpls function of the expscted level, namely

T(x):Ex + 2.5, 4.

&

In thig case it 1s 5.518. The average nuwber of explosions 1s one. From these four
numbers one can easily compute the accuracy per trisl (.321), the accuracy per ex-
plosion (1.77), and the weighted accuracy (1.1L).

The computation is slightly more complicated in case one makes 2 trials at each
level instead cf one. Then the probabllity of at least one explosion at a level x
is pg(x) =1 - qi, where Ay is the probabillity of 3 non-explosion in s trial at level
X. Thils is the same as the probabllity that one cbtalns at least one explcsion out
of two trials where the seccrd trial is made regardless of whether the first iz an

explogion. Then the prcbabiliity, P.{(x), of the exploziocn cccurring at x is
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-

pe(x)-Qg(x), where Qe(x) 1s the probsbility that a trial is made on level X. For
example, the probablllity of an exzplosion in 2 trials at -2.5 1s 1 - (.99379)2 =
.01238 and the probability of an explosion out of 2 trials at -2.0 is 1 - (.97725)%=
.04498, Hence, the probability of the explosion In a test occurring at -2.5 1s
.01238 and gt ~2.0 1g .0bh98-(1-.01238) = .0obkkk2., Table 28 glves the probabilities

for the explosion levels.

TABLE 28

Probability Distribution for the Single Explosion
Method with 2 Trisls on a Level

Level pe(y), or 1—q§ qi Probability Pa(x)*
2.5 .01238 .98762 .012
-2.,0 .0hk98 .G5502 0ks
-1.5 .12916 .87084 .122
-1.0 .29215 . 70785 «2h0
=0.5 .52188 47812 .303
0.0 . 75000 .25000 .209
0.5 .9g0L80 .09520 <063
1.0 .97k483 .02517 . 006
1.5 .9955h .00LL6 .000
2.0 . 99948 . 00052 .000
2.5 .99996 .0000k . 000 |

# The probabllitles were rounded to 3 declmal places and then adjusted to

aum to one.
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The expected level is -.657 and the variance is .435. The average number of trials,
Tg(x), can be thought of as the sum of the average number of trisls on the level of
the.explosion and the averasge number of trials on the levels without the explosion.

The latter ig related to the sverage level by the formula

D E(x) + 2.5
)

Evgluating this gives 7.372. The number of trisls on the level of the explosion 1s
one or two depending on whether or not the explesion occurs on the firgt or second

trial. This aversge is therefore

N 1 + 2q
J P(x)(1p, +2q D 5//(]—q2)== 5 P (x) ik
X 2 X X X X x 2 1 +qx

Evgluating this formula gives 1.406.

The sum of these two numbers (7.372 + 1.406 = 8.778) 1s the aversge number of
trigls. The average number of explosions 1s one. The accuracy per trial 1s .262,
the accuracy per explosion is 2.30, and the weighted accuracy is 1.22.

For & Single Explosion Design with k triasls per level the computatlons are made
in a similar fashion. Here the probabllity of at least one explosion out of k
trials at a level-g_is 1 = q§ = pk(x). Then the probablility of obtaining the ex-

plosion at x 13 pk(x).~ Qk(x) Pk(x), where Qk(x) is the probabiliiy that trigls

are made on level X. The expected number of vtrlials at the level of the explosion 1s

g2 .o K S
%Pk(:c) (1+P, + 2:Q; Py + 3°Gy Py + «oo + ke P )/ (1-qy)

1 +2qx+...+kqu=1 &

1+qx+ +q§_1

= 2 P (x)
X k' ¥

# This can alsge be written as

k+1

k
_ k-q - (ke V) g+
2B (x) —* X
X

e
p, (1-¢5)
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This formuls 13 easy to use if the same computation is done for successive values
of k, for then the numerators and denominstors are bullt up step by step.

The expected number cf trials at the levels where there 1s no explosion is
simply

E(x) + 2.

KT

The sum of this and the preceding number 1s the average number of trials, Tk(x).
The average numbor of coxplosions is again one. The accuracy per trial, sccuracy
per explosion, and weighted accurascy follow essily from the above computations.

For this Single Explosion Design there is no possibllity of msking an ad-
justment (for fixed §) to minimize the variance of the reported level since we end
the test with only one piece of Information, namely the lsevel of the first explosion.
However, we can devise an adjustment to make the sversge reported final level nearly
constant wlth respect to changes 1n_§1mithin certain limits. The procedure for
doing thig is discussed in Sectlons 8 and 10.

19. Cascade Methods.,

As an example of the computations involved in the Cascade Methods let us con-
gider the particular method which consists of a Single Explosion Design (one trisl
at each level) followed by another Single Explosion Design which starts three
levels below the level at which the first explosion cccurs (k= 1, m= 1, h = 3),
The first run starts st -2.5 snd ends at level x. The second run starts at level
x-1.5 ( § = .5) and ends at lsvel y. Tﬂe probaebllity of an explosion st y starting
st a level, say -1.0, 1s written -1.0 P(y) (then P(x) as uged previously would be

written P(x)). Thus

2.5

-1.0P09) = Q. o4 5t e Qg o Py

Table 29 gives the probability of ending at level y for starting points from -2.5
to +3.0. Note that, since the probabllity of an explosion below level -2.5 13 o,
i1f one starts the second run lower than -2.5, the probability that the run results

in an explosion at level y 1s - 5P(y).
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o

TABLE 29

Probability Distribution for a Single Explosion
Run Starting at Various Levels

{one trial on each level)

Each Entry Represents wP(y)

w| -2.5 -2.0 -1.5 -1.0 -.5 0 .5 1.0 1.5 2.0 2.5 3,0

-2.5| .0067
-2.0] .0226 ,0226

-1.5] .064L9 .0653 .0668
-1,0] .1438 .1hh7 1481 .1587
-0.5] .2353 .2367 .2422 .2596 .3085

0.0] .2636 .2653 .271k .2909 .3457 .5000

0.5] .1823 .1834 1877 .2011 .2361 3457 .6915

1.0] .0684 .0689 ,0705 .075% ,0897 .1298 .2596 .Bhi3

1.5] .0120 ,0121 ,012h ,0133% .0158 .0228 .045T .1h81 ..9332

2.0| .0009 .0009 .0009 ,0009 .0011 .0016 .003%2 .010k .0653 ,9772

2.5 0 0 0 0 0 0 .0001 ,0002 .0015 .0226 .9938

3.0 0 0 0 0 0 0 0 ] 0 ,0001 ,0062 1.0000

# The factors p, and g, used in cowputing this table will be found in Table 27.
X X

As described in the Technicsl Part, Section 8, the reported level is to be a
function of the difference of the two end levels (1. e., of y-x = r). It proves to
be expedient to first compute a table in which the columns show the probabilitles,
P(x,y)s for a constant value of y, of the first run ending st levels of x from
=2.5 to +3.0 and the second run ending at the particular level, y. For example, the

first column is obteined by computing

P(-2.5,7) = _, sP(-2.5)., o P(¥) = .5 F(-2.5)_, sPly)
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for y = -2.5, -2.0, ..., + 3.0, and the fifth colum by computing

P(=.5,5) = _, sP(=:5), oP(¥)

for the seme ¥ values as shove. Summing the rows gives the probability, P(y), of

=L

snding at level y. Table 30 gives the values of P(x,y) for the Cascade Method

K=1,m=1, h= 3.

TABLE 30

Probability Distribution for the Cescade Design,
k=1, m=1, h=3

Each Entry Represents the Prohability
of the First Run Ending at Level x,
and the Second Run Ending

at Level y, 1. e., P(X,¥)

]
End Level End Level of the First Run, x 4
of the d
Second A E
Run, ¥ |[P(y) ]| 2.5 -2.0 =-1.5 ~-i.0 -.5 0 .5 1.0 1.5 2.0
-2.5 L0014 0 .0001 .000k .0009 ®
~2.90 L0107 i} L0001 ,0005 .0015 .0032 .005L4
~1,5 .0b8L 1,000k ,0015 .00k2 .0093% .0154 .0176
-1.0 1361 ||.0009 .0032 .,0093 .0207 .0341 ,0390 0289
~-0.5 2438 J|.0015 .0053% .015% .0338 .0557 .0638 .0W73 ,0211
0.9 .2791 ||.0016 .0060 .0171 .0379 .062L .0715 .,05%0 .0236 ,0060
0.5 L1937 .0011  .0041 .0118 .0262 .0k32 ,0L95 ,0367 .O164 .0041 ,0Q006
1.0 L0726 f.000k ,0015 ,00L4 ,0098 .0162 .0186 .,0138 .0041 .0016 .0002
1.5 L0128 [{.0001 .0003 ,0008 .0017 .0028 .0033% .0024 .0011 .0003 0
2.0 . 0009 0 0 .0001 ,0001 .0002 .0002 .0002 .0001 o} 0
2.5 0 0 0 0 0 0 0 0 0 0 0
3.0 0 0 0 o} 0 0 0 0 0 0 0
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Another table 1s then constructed by rearranging the first table so that the
columns show the probebilities P(x,r) for a glven r and varying values of x. Sum-
ming the columns gives P(r). The values of P(x,r) and P(r) are given in Table 31.
Reference to Section 8 on the possible adjustments shows that we can modify the
reported level, for each value of r, so that the sverage reported level 1ls the
same regardless of the value of r. Under these circumatances the variance of the
reported level will be equal to the sum of the x variances for each value of r,

each variance being weighted by ihe appropriaté probability. Thst 1is,

2 2
Z P({x,r} Z x Plx,r)
Variance = % P(r) 5 S B(r) "(x F(r) ) ]

Fork =1, m= 1, and h = 3, the variance is .2921.

The number of trials required to reach a final level, ¥, does not depend on the
end point of the first run. This follows from the fact that the number of trials
in the first run 1s

- 12,

and in the second run is

. Y~ (x-hd ) Y
&

—_

If we add these two together we elliminate X, and obtain for the total number of

trials (1. e., for fixed y)

L‘{-'?g;i+h+2.

¥rom this expression, we obtain the average number of trigls to be

Z P(y)lf'%-g’;iékh-%E.
y

In the case ¥ =1, m =1, h= 3, the average number of trials ilg 9.6650. The number
of explosions i3 two. It follows that the accuracy per trlal 1s .35%, the accurascy

per explosion ia 1.71, and the welghted accuracy 1s 1.15.
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robabllity Distribution for the Cascade Dzsign,
k=1, m=1, h=3%

Each Entry Represents the Probabllity
of the Firgt Run Ending st Level x,
and the Second Run Ending
at Level x+r, 1. e., P(x,1)

SUE e

End Levell
of the Value of r
First g
Run, x § -1.5 -1.0 =-.5 0 .5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
-2.5 .0001 .000L .0009 .0015 .0016 .0011 ,000k .CGO1 |
-2.0 ,0001 ,0005 .0015 ,0032 .0053 .0060 .0041 ,0015 .0003
-1.5 .000k .0015 .00k2 ,0093 .0153 .0171 .0118 .00LL4 ,0008 .0001
-1.0 .0009 0032 .0093 .0207 .0338 .0379 .0262 ,0098 .0017 .0001
-0.5 L0054k .015L4 ,03L41 ,0557 .062L .0L32 ,0162 .0028 .0002
0.0 .0176 .0390 ,0638 .0715 .0kg5 ,0186 .0033% .0002
0.5 .0289 .0bk73 .0530 .0367 .0138 ,002k .0002
1.0 .C211 ,0236 .0164 .0061 .0011 0001
1.5 .0060 .0041 ,0016 .0003 '
2.0 . 0006 ,0002
2.5 0 0
3.0 0
P(r) .0BOS .1332 .1798 .1957 .1715 .1211 .0692 .0321 ,0120 .0035 .0008 0001

# This Tgble is obtained by a rearrangement of Table 30.

The correctlons to be made to the result of each test in order to minimize the

variasnce of this reported level and tc make its expected value indpendent of changes

in § are discussed in Sections 8 and 10.
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Now let us conaider the slutation where k trials are made on each level for
the first run and m trials are mede on sach level for the second run (h given).
Then, as described in the k = 1, m = 1 case, we can compute the probabllity
Pk,m(x,y) of the first run ending on }evel X and the second run ending on level y.
If we sum these probabllitles (for a fixed x) over all values of y we cobtain Pk(x),
and if we sum them (for fixed y) over all values of X we obtain Pk,m(y)‘ Finally,
we can sum them for all values of ¥y and x for which (y-x) is a constant r and so
obtain Pk,m(y—x) = Pk’m(r). Using Pk’m(x,r) we can compute the minimum variance of
the average reported level, the computations proceeding as In the k = 1, m = 1 case.

The average number of trials required to obtain particular values of x and y
is equal to the sum of the average number of trigls requlred to reach level x plus
the averagse number of trials required to go from level x to y. These two ex-
presslons are, from the section on the Single Explosion Design and the earlier re-

sults of this section, equal to

T+2g, + ... +qu~1

N X+2.5 X
k t k-1

$ 1+qx+...-1—qx

5 and

m=1
m:v“(x-hé ) . 1.+ Eq‘L-a- vas + mqy

é . T m-1
1 +qy+ qy

Consequently the average number of trials is simply

1 +2Q, + ... +qu—]

2 B (xy) |k B3, e
X,y k,m 8 1+ Q. + .. qu !

mv:utx_hé ) . Yo+ Eq_[%r . e mqv

& 1+q_5r+..-+q_y

+
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The best method for computing thls quantity will depend upon the values of k and

m, and the previous computations which have been wade. For example, we find that when

kK=m=1, lc(ﬁ’gié) &+ 13.1(“"3(2{5"]{1‘§ )y (X+§.5 + h). Moreover the sum of the other
two terms 1s 2 so that the above expression for the sversge number of trisls re-

ducesg to

2.
Z P1’1(y) o X+§'j +h + 2 .

Tt will ususlly be aedvantageous, since we have to introduce (y-x) in order to com-
pute the variance, to write m(m%rié—)-) as m(% + h) and use the probabilities
Pk,m(r) to compute this portion of the expression.

The number of explosions is always 2 so we can now readily compute accuracy per

trial, accuracy per explosion, and weighted accurscy.

1

20, Single Explosion plus m Trisls.
This is an extenslon of the Single Explosion Design (Section 18). The simplest

cgge (k =1, m= 1) 1s to meke single trials on successlvely higher levels untll an
explosion occurs at level x and then to mske one more trial at level x-hé . Start-
ing at -2.5 the probability of an exploslon at level x and an explosion at level
x-hé& 1s expressed by

P(x) Px-hs

where P(x) 1a the same as -s. 5P(x) of the last ssction. Similarly the probebility

of an explosion at level x and of a non-explosion at level x-h8§ 1is gilven by

P(x) dyng

As an example consider the probability of obtalining an explosion on the run up
at level -1.5 and another explosion at level -3 0 (h=-1, & = .5). P(-1.5) is

06488 and p_, 1s .15866, so the probabllity is .06488 * 15866 = .010. The pro-

0
babllity of obtalining en explosion st level =1.5 and s non-explosion at level =1.0
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is .06488 - 84134 = ,055., In thls menner & distribution is computed showing the

. N N oa wa N}
rrebebllit f the gingle trisls osul

¥y ©
additional trial resulting in an explosion at level x-hé . Similarly s distribu-
tion is computed for the probability of & non-explosion at level x-hé . Table 32

ghows these values for h = -1 and § = .5.

TABLE 32

Probability Distributions for a Single Explosion
plus m Trials Design
(k =1, m=1, h= -=1)

Level x ' Probebility of an explosion Probability of an explosion
at x, and at x + .5 at X, end of a non-explosion
S N —— ab X + .5 —
-2.5 0 .006
~2,0 .002 .021
=-1.5 010 . 055
-1.0 .0bLh .100
-0.5 17 .118
0.0 .182 .082
0.5 .153 .029
1.0 . 063 . 005
1.5 012 . 0
2.0 . 001 0
2.5 0 0

The expected level of the x's in the csses resulting in exploalons at level
x-h§ is determined by evaluating

% X P(X)pXt-hS

% PX)Propg

For our oxowple 1t ig .065,
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The expected level of the x's in the cases resulilng in non-expleosions at level

x-hé is determined by evaluating

2;- x P(x) Ax-ns

%’ P(x) U-ng

For cur example it 1s -.671.

As in the preceding sectlon on Cascade Methods, we are going to adjust the finsl
level so that the average reported level of those tests which end in an explosion
is the same as the gverage reported level for the tests which end in a non-explosion.

Under these circumstances the varlance of the reported level 1ls

(zx P(x) px--hs‘)g

2 X
g Px-hs E P(x) Pyng

(gx P(x) qx_hg)z

2
+Z X% P(X) Quope = 3 .
% x-h$ % P(x) Uy-ns

The varlance in the perticular example we have been discussing is .h3k.
The expected number of trisls required will be one more than the expscted number

4

of trials requiraed in the Single Explosion Design (one trial on a level), that is

Elx) + 2.
+ 2
&
For § = .5 and h = -1, thls value is 6.518, 3imilarly the aversge numbsr of ex-

plosions is

X

-

TRy T T

XTI

TR S T

T ST T Y2 T T,
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or 1.58L4. C(onsequently the accuracy per trial ls .353, the accuracy per explosion
ig 1.45, and the welghted accuracy 1s 1.03.

Now let us consider the case where we make k trials on a level at successively
higher levels until an explosgion results, and then take trials on lesvel x-hd
elither until an explosion occurs or m non-explosions. The probabillty is Pk(x)
that we obtain our first explosion on level x on the up sequence, q?ahg that we
obtsin m non-exploslons on level x-hé and 1"q§-=h5 that we obtain an explosion on

level x-hé Congsequently the probability is
m
Pk(x) 9%-hs

that we obtain our first explosion on level X and no explosions on level x-hé , and

P (x) ¢ [1-ag pq ]

that we obtain our first explosion on level x and an explosion on level x-hé§ .
The variasnce in this case is computed as in the cage where k = 1, m = 1 with
m _
the substitution of Pk(x) qx-hs for P(x) Ix-hs and Pk(x) [1 qx—hs ] for

The average number of trials required is equal to

@

m
1=y m
Ty (x) +§ Fie(x) [1%1 1 9.ng Pxns * qu~hs]q

whera Tk(x) iz defined in Section 18.

# This expression is readily computed if we are dealing with successively in-

creasing values of .



This expression can also be written as

(1-Gyps )
To(x) + Z P (x) —0e
k X k Px-hs

21. NPF Inveried Method.

&

Tn the NPF Inverted Method one makes a single trial at successively higher levels
until an explosion occurs at level x, and then at level x-& one starts making
three trials on a level at successively lower levels until all three trials are non-
explosions. (One stops testing st a lsvel as soon as an explosion occurs and starts
again at the next lower level.) The run up starts at a level where the probability
of an explosion is almost zero. For & = .5 this would be at -2.5.

The probability of the first run ending at x is P(x). The probsbility of the
gsecond run ending at y, if one starts at x- &§ , is the probability that there is an
explosion at each of the levels x-§ , x-28 , x-3§ , ... ¥ +8§ , and that there are
three non-explosions at y. This probsbllity ié (1=q§_5) : (1—q§_25) (1—q§+6)‘q§,.
Then this product times the probability of en explosion at x 13 denoted by Q(x,y).
For example, 1f x = 1.0, P(x) = .1k from Table 27 and Q(-1.0, -2.0) =
SThh . (1-(.95319)5) . (.97725)3 = .02514, A table 1s then computed in which the
columns show the probability, Q(xX,y), of the run down ending at varying levels of g
and the run up ending at a given x. The rows show the probabllities, Q(x,y), of the
run up ending at varying levels of x and the run down ending at a given y. Teble 33
glves the values of Q(x,y). Suming the rows glves the probability of‘ ending at y,
Q(y), regardless of where the run up ends. The table is rearranged, so the columms
sre the probabllities Q(y,r), for a constant difference in end levels (x-~y = r), and
for varying values of y. Summing the columns gives the probabilities, Q(r), of r,
regérdless of the final end level. Q(y,r} and Q(r) are given in Table 3k,

The expected end level of the second rim E(ylr), is computed for each value of

r by evslusting

Z. yUT,r)
E(ylr) = LT(—?T&
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TABLE 33

Probability Distribution for the NPFI Method

Esach Bntry  Represents the Probability
of the Run up Ending at Level X,
and the Run Down Ending .
at Level ¥, Q(x,Y)

End
Level a
of Run End Level of the Run up, X
Down
X Ay)) 2.5 -2.0 ~-1.5 ~-1,0 -.5 0 .5 1.0 1.5 2.0
~%.0 .00679(.00621 .00042 .00008 00003 .00002 .00002 .00001
-2.5 .03100 .02219 .00k25 ,00176 .00117 .00088 .0005%3 ,00019 .00003
-2.0 .12562 .06055 .02514 ,01664 .01248 .00755 .00275 .00048 00003
-1.5 .502#6“ L,11685 .07733 .05800 ,03509 .0i279 .0022L4 ,00016
-1.0 .33630 18011 .10509 .06358 .02317 00406 ,00028
-0.5 .16270 .08715 .05273 .01921 .00337 .0002%
0.0 .03264 .02279 .00830 .001k5 .00010
0.5 . 00238 .00201 .00035 .00002
1.0 .00005 . 00005

# Tor x = 2.5 the entries for y= -1.0 and -0.5 are both .00001 and are zero

for all other values of v-




TABLE 34

Probability Distribution for the NPRI Mst

Each Entry Represents the Probabllity
of the Run Down Ending at Level ¥,
and the Run Up Ending at

Level y+r, Qly,r)

had
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End
Level
of Run Value of 1
Down, ¥ 5 1.0 1.5 2.0 2.5 3.0 3,5 L.o
=3.0 .00621 . .000L2 .00008  .00003 .00002 . 00002 .00001
-2.5 .02219 .00k25  ,00176 .00117 .00088 .00053 .00019 .00003
-2.0 . 06055 .0251% .01664 .01248  ,00755 . 00275 .00048 .00003
-1.5 .11685 07733 05800 . 03509 .01279 00224 .00016
-1.0 L4011 .10509 .06358 02317 .00L06 . 00028 . 00001
-0.5 .08715 .05273 .01921 . 00337 .00023 . 00001
0.0 .02279 .00830 .00145 .00010
0.5 .00201 .00035 .00002
1.0 . 00005
Q(r) 5791 27361 ,16074 . 07541 . 02553 . 00585 . 00085 .00006

Suming these expected end

In accordance with our procedure for corrvecting y so that its vaeriance 1s a minimum,

levels over pr glves for the average

E(y)==‘21 Qr) « B(yir) .
T

the.variance of the reported level is

expected end level

LR P P A C 2N

T
5
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The sverage number of trlals is the sum of the average nuitber of trisls made
to reach x and the average number to reach y. The average number msde to resch x
is

z(&gmz + 1)-P(x)
X

The number of trisls on each level of the run down is one, two or three depending

-upon whether the first or second trial is an explosion. Congcguently the expected

number of trials on a level Yy, glven that we actually make trisls on this level,

is equal to

1Py + 2°q, Py + 3q§ (ag+py) -

Now the probability that we test on level ¥, and that the run up ends on level x,
is

AUx,y)
3
Ay

From these two exprsssions we obtain the average number of trlisls required on the

run down as .

o 7 (o oy

mgd
- % AY) -

1
vg
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Thus the average number of trials requlred for the NPI Inverted is

3
1-q
z: ﬁigéi‘%1) CR(x) v 2 Q(Y)jtél ‘“%“
x y Y QY

The correction for varisnce and interval gize for thls method sre made in g
fashion similar to that described in Sections 8 and 10.
The number of explosions for the run up is one, and for the run down it 1s one

for sach level sbove the finsl ocne. This is

x=8§-y_r _,
§ 3 '

The average number of explosions 1is then

x. - . .
1+Z Q,(r)(g 1) % % Q(r)

Having determined the variance, trisls and explosions, the three accuracy functions

are easily found.

22. The Picatinny Method.
The computations for the Picatinny Method are similer to those for the 3ingle

Explosion Desligns. The Plcatinny computstions have been done with five dscilwal place
accuracy. With one stendardizstion the test starts st -4.0. Hence the ususl trunca-
tion of the cumulative normal distribution was not wade. For example, the proba-
bllity of 10 successive non-explosions at ~4.0 is .99970. The sauwe probabilities

were naed for the procedure starting at +.5. The two distributions are given in

Tsble 35.
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TABLE 35

Probabllity Distributlion for the Plcatimny Msthod

Start at Start at
~4.0 +:5

~4,0 « 00030 . 00000
~%.5 . 00250 . 00007
~3.0 .01338 .00L90
=2.5 059483 07722
-2,0 . 19007 31762
-1.5 36664 20115
-1.0 30251 17310
-0.5 L0637k 02495

0.0 00163 . 00098
_0.5 . 00000 . 00001

To simplify the computations for the procedure starting at -4.0, the set of 10
non-explosions at the lower level was not required if the explosion occurred at
-4,0, S8imllarly in the cagse of starting at +.5 the explosion was not required if
the set of 10 non-explosions occurred at +.5. The error caused by these simplifi-
cations cammot be more than .03 per cent and .001 per cent, respectively.

In this cage the average number of trials was computed by sumning the expscted
number on each level (regardless of whether an sxplosion resulta). The expected

numnber on level x (when triasls sre made on that lavel) is

1 - Q;{o p1o(x)

17 Gy Py

If the tegt starts at -&.0, the expected number on level x is

plo(f)

Py ?

(=5.0) a, (-%.048 ) ... g (K-8 )

49 Lo
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where q10(y) =1 - p1o(y) is the probability that no explosion occurs in 10 trials

at level y. If the test starts at +.5, the expected number of trials on level X 1s

p]0(+'5) p‘o(+'5a8 ) vae P10(X)
pX

The number of explosions ig one when the tests starts at -4.0. In the other cage

it 1s

.5 — B(x) 1

(5.261 for & = .5).

23. Seguential Method.
In this section we shall show how to obtain the characteristics of & sequential

plan set up as described In Section 11. In computing the 0C, average number of

trials, etc., it has been found inadvisable tc use the approximatiorn given by Wald.

This arises primarily from the fact that we are truncating, but 1t is also true

that some of his approximations, especially for average sample size, do not seem to

be sufficiently accurate in the range in which we choose to take Py pe,c& and B .
To make the situstion clearer, let us consider a specific case, namely P, = .08,

P, = 6,6t (=£) = .25, truncation at 13% trisls. Using the formulas of Section 13,

the sequences given in Table 36 for u, and dn are obtained.
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TABLE 36

Critical Number of Explosions as g
Function of Trisl Number

n w, dn
i
1 — .
2 - 2
3 - 2
b - 2
5 - 2
6 - ~(3)we
7 - >
8 - 3
9 - 3
10 - 3
11 ~ 3
12 - 3
13 0 3

# - means that no move can be made st these positions.
2% Tt is impossible to move down on trial 6 since one would need to have had

2 explosions at some preceding trial, and the move down would have been

made then.

Now let us asasume that we are testing at level x, the probabillty of an ex-
plosion being Py and that of a non-exploglon, qx(=1—px). The quanritities which are
necessary in order to carry out an gnalysis are:

(1)}, p(x,§ ), the probability of moving to level x+d ,

(2). p{x,-§ ), the probability of moving to level x-é ,

(3). p(x,0), the probsbility of no move from level x,

(%), The average number cof triasls and the average number of explosions, given

that a particular oune of the above resuits 13 obtained, namely T(x, § ),

T(X;¢ 5 )) T(X,O)J D(X; § ); D(XJ“WS ) and D(X;O)-
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It is obvious from Table 36 that p(x, & ) = q;f, T™x, & ) =13 and D(x, § ) = 0.
However, the remainder of the expressions do not follow so rea&il‘y. For example,
the probsbility that we mske s decision to move from x to x-4§ on the 9th trial
is equal to X(9,3) qf( pi, where K(9,3) is the number of ways of obtaining 6 non-
explosions and 3 explosions in 9 trials so that no decision to move down has been

mede before nine trisls. In order to obtalin the values of the K factors, sometimeg

called path-coefficlents, it is convenlent to consider Table 37.

TABLE 37

Path Coefficients for o (=4 )=.25, pl=.08, p2:=.'!6

Number of Explogions
Trial No. o] 1 2 3 I
1 1 1
2 1 2 1
3 1 3 2
L i L 3
5 1 5 L
6 i 6 5
7 i T L 2
8 1 8 18 11
9 1 9 26 18
10 1 10 35 26
11 1 1" h5 35
12 1 12 56 L5
13 1 ® 56
14 i3 81 68
15 13 9L 149 68
16 13 107 2L3 1h
17 13 120 %50 243
18 13 133 L70 350
19 1% 146 603 470
20 13 159 Th9 603
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This table is bullt up by successive sddition, and sach entry represents the
number of ways of obtainlng & definite number of explosions (¢, 1, 2, 3, or 4) out
of a fixed number of trials. If a test on a particular level results in s combins-
tion of trials and explosions whose position in the table is underlined, then s
decision is mede to elther move up or down. Consequently, the numbers undsrlined arve
the required path coefficlents, and these numbers are not used in buillding up thst
portion of the taeble lying below their particular position. For example, K(8,2) =
K(7,1) + X(7,2) while K(8,3) = K(7,2) since on sll tests having 3 explosions out of
7 trials, we must move down one level, and no more trials are necesssry. For pur-
poges of iliustration this table has been extended beyond 13 trials by msking use
of the extension of Table 36.

From thls table of path-coefficients one may readily compute

p(x’ § ) = q;(3

p(x,0) =13 q,% o, + 68 a}' ph

p(x,-§) = P2 + 2q, P + 3a% P3 + b PE
+ 58 1} + 11¢0 p2 + 18q8 pj + 26q] p3
+ 35q, B3 + b5a) B2 + 560)° p3 |

Values of p(x,8 ), p(x,0), and p(x,- 6 ) are given in Table 38.
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TABLE 38
' Values for p(x,d ), p(x,0), and p(x,-& )

(Intervsl 8ize = .5¢")

X p(x, §) p(x,0) p(x,-§)
-3,0 1.000000 0 0
~2.5 .922210 07736k , 000428
-2,0 LTh1h37 .251708 . 006876
-1.5 .L07033 .52066h . 072307
=1.0 .105842 .515kh02 .378818
-0.5 ' .008260 .159750 .831983

0.0 .000122 . 009887 . 989995

The required mean values for number of trials and number of explosions can be

readily obtained by use of the separate terms making up p(x, 4 ), p(x,0) and

p{x,-§ ). Thus

P(x,0)D{x,0) = 1 - (15q}1{2 px) + 2 (6851}1§1 Pi)

D(X,g) = 0
2 o
p(x,~& ) D(x,-§ ) =2 - (p5 + 2q, p5 + 305 p5 + k) pf)
L
+ 3+ (5a8 p2 + 11Q) p2 + 1840 p2 + 26q] pl

0o - ~ - [ Ws z
+ 35Q, py + 4507 Dy + 56Q, p7)

T(x,0) = 13

T(x,8) =13
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i

p(x,=§) T(x,-8 ) = 2(p5) + 3(2q, p5) + 4(3q2 P2) + 5(4q) pd)

¢ 7(5q, p3) + B(11a) ) + (185 p2) + 10(26q] p3) -

« 1103508 p2) + 12(85a) p2) + 13(560)° p3). -

Let us now assume that we gtart the sequentisl testing at level 8. Then the
probablility that our recorded level is x (a level on which trials are made)} 1is

P(xis), where

P(xlg) = p(s,-§ )-p(s-§-8)...p(x+ §,~- §)p(x,0)

where x 1s less than g. If X is equal to g, we have
P(xls) = p(s,0),

and if X is greater than s.
P(xls) = p(s, 8§ )-p(s+8§, 8§ )...p(x-6, 8§ )-p(x,0).
Simylarly, the probability that the recorded level is x+.548, given that sequential

tegsting is started at level g, is

P(x+.5& |s) = p(s,~8) p(s~§,-8 )...p(x+ &,~-8) p(x, §) x<s
P(x+.58 [8) = p(s,d ) p(s+§,-§) =3
P(x+.58 |s) =p(a,8) p(a+§,8)...p(x,8) p(x+8§,-8) x>8

Table 39 gives the values of these various probabllities for the particular example

which we are considering. The values glven for -3.0, -2.5, -2.0, etc. refer to

P(xig) while those given for -2.75, -2.25, -1.75, etc. refer to P{%x+.58§ i3), since

S is equal to .5. ~
Now 1f we precede the sequential testing by a Single Explosion (two trisls on g

level) Dezign starting at -2.5¢7, the probabllity that we start sequentisl testing ~

[§ 8]

on level. g is P.(2). The computation ¢f P.{(8} nas been expiained i 3ectlon !
- o

<
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TABLE 39

Probability Distribution for the Sequential Method
(o(zﬂ= .25, p, = .08, P, = L16)

Truncatlon at 13 Trials, Interval Size of .5¢°

Fach Entry Represents the Probability that a
Particular Level will be Recorded if
Sequential Testing Starts at Level s

L)

Level at which Sequential Method 1s 3tarted, g

Recorded
Tevel 2.5 -2.0 -1.5 -1.0 -0.5 0.0 G.5

-3,00 0 o 0 o 0 0 0

-2.75 .000426 .000003 ¢ 0 ¢} 0 0

-2.50 L.077364 .00053%2 .000038 . 000015 .000012 .000012 . 000012
-2.25 .006341 .0063 41 .000458 - .000173 .0001L45 .000143 , 000143
-2.00 232128 .251708 018200 . 006895 .00573%6 .005679 .005679
-1.75 .0Lkghhi .053611 .053611 . 020309 .016897 .016728 .016728
-1.50 .356010 .386040 520664 197237 . 164098 . 162456 . 162456
-1.25 . 105430 114323 .154191 15191 .128285 .127001 .127001
-1.00 o 1Lh3LL3 .15554h43 .209786 .515k02 . 428806 Lok515 JA424515
-0.75 024508 . 026575 .035843 . 088059 .088059 .087178 .087178
-0.50 .00LT06 .005103 .006882 .016908 .159750 .158152 158152
-0.25 .000241 . 000261 000352 . 000865 °.008177 .008177 .003177
-0.00 . 000002 .000003 .00000k . 000009 .000082 . 009887 . 009887

Consequently the probability that the final recorded level ig x is given by

2. PB_(s) P(xls),
o o

where 3 tskes on all values for which P_(g) # 0. Similariy the probabliiity that the
«

{inal recoc

rded level is x+.58

*
L2

PRS-

S

{(g)-F(X~-.5&:3),

~
[
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The values of these probabilities are given in Table k0.

TABLE 40

Probability Distribution for the Sequential
Testing Combined with a Single Explosion
(2 trials on a level) Design

ri:{ec:orded Level Probability
-3.00 . 000000 o
-2.75 . 000005
-2.50 . Q00967
-2.25 . 000536
~-2.00 . 021059
-1.75 .02h154
-1.50 .227164
~i.25 136417
-1.00 .h06228
~0.75 077976
~-0.50 .097708
-0.25% .00502%
-0.00 .002776

4

Finally, the expected value of the estimated percentage point becomes

Z[x%Pe(s)-P(xIs) + (x+.5§ )Zs-’ P () P(x+.58 ls,ﬂ .
P g

The variance of the estimated percentage point can be cglculated by the use of the

asme probgbilities and i1s equal to

2. [xaéys) P(xls) + (x+.58 )5 & P () P(x+.58 is)]
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The treatment of average number of trials and average number of explosions can
be explained in a similar fashion. For example, if we start sequentisl testing ar
level s and record level x (where x 1s less than s), the total average number of

trials required for this will be

T(x|s) = T(8,-8§) + T(s~8,-8) + +v. + T(X+ §,-38) + T(x,0) .

In general, we obtain the total average number of trials corresponding to P(x|s) or
P(x+.5 § Is), by substituting T( ) for p{ ) and replacing the multiplications by
additions., T(x,0), T(x, § ) and T(X,- §) are given in Table 41, while T(x|9) and
T(x+.58 |s) for the values of x and s pertinent to our example are given in Table
42, Table 43 gives D(x,0), D(x,- &) and D(x, § ); Table 4k gives D(x|s) and

D(x+.5 & 1s),
Denote by Te(s) the average number of trials required when we obtain the first

explosion on level 8 by use of a Single Explosion (two trials on a level) Design

starting at -2.5. Then the total average number of trisls required when sequential

testing is started on level g is
'][‘2(‘3:) + T(xls).

Consequently the total aversge number of trials required for the sequential method

1s

fg é QTE(‘S) " ‘T(xls)) - Py(s)-P(xls)

2T E (2000 « 0xni58 10)) - 2ye)-Blse55 1a)

A similar expression 1ls obtained for the average number of explosions by replacing
T ) by D{ ). Hote that in this instance D {s) = 1.

As explalned in Section 11, no correction ig needed In the Sequential Method
to minimize the variance of the averasge reported level or to adjust for changes in

the interval gize §.

£ =




%0 .
TABLE B

yalues foT (K, &1 P{%,0)} and P(x,m 6 )

(interval 3ize 5 )

T(X, 5) T(Xso) T(X;Pg)

1%.00

1%.00 13.00 W79
1%.00 1%.00 5.99
1%.00 7.20

1%.00 7.4}

1%.00 6.25

13%.00 .26

2,60

TABLE k2

ge Number of Trials Required when gequential
d the Recorded




TABLE 13
Values for D(x,8 ), D{(x,0) and D(x,-§ )

{Interval 8ize .5¢%)

X Dix, §) D(x,c) D(%x,~-§)
-3.0 0
2.5 4] 1.04 2,11
=2.0 0 1.13 2.28
=1.5 0 1.35h 2.46
-1.0 0 1.66 2.52
-0.5 0 2.01 2.1
0.0 o] 2.34 2.18
0.5 2.04

TABLE 4k

Average Number of Explosions Required when

Sequential Testlng Starts at Level g and
the Recorded Level is x or x+ .5§

131.

Recorded Level,

Level at which Sequential Testing is Started, s

-

X Or X+ .58 -2.5 -2.0 =-1.5 -1.0 -0.5 0.0 0.5
-3.00
~2.75 2.11 k.39 6.85 9.357 11.78 13.96 16.00
-2.50 1.0k 3,32 5.78 8.30 i0.71 12.89 14.93
-2.25 2.28 2.28 L.7h T.26 9.67 11.85 13.89
~2,00 1.13 1.13 3.59 6.11 8.52 10.70 12.7h
-1.75 2.46 2,46 2.h6 .98 7-39 9.57 11.61
~1.50 1.3k 1.3L 1.34 3.86 6.27 8.45 16.49
~1.25 2.52 2.52 2.52 2.52 4.93 7.11 9.15
-1.00 1.66 1.66 1.66 1.66 L,o7 6£.25 8.29
~0.75 2.41 2. 2.47 2.4 2. 41 4,59 £.63
-0.50 2.01 2,01 2.01 2.01 2.01 k19 6.23
-0.25 2.18 2,18 2.18 .18 2.18 2.18 bh.o2
0.00 2.3k 2.5k Z.34 2 2.34 2.34 4,38

AN
=




132.

2k, The Pursulit Method.

Although this method has not been recommended for general use, it seems desir-
able to indicate the procedures which were used In determining its characteristics.
The primary resson for doing this is explained by the fact that it 1lgs extremely
difficult to calculate these characteristics exactly as was done for the other
methods, and one is forced to sdopt an experimental procedure. This experimental
procedure has wide spplicability and often allows one to obtain results which would
be impossible to reslize In any other mamer.

The essential feature of thls procedure is that we conduct a large nunber of
simulated sensitivity experiments, and then calculate the mean and variance of the
estimaied percentage point from the resulting tests. This mean and variance are of
course subject to sampling error and so we do not obtain the exact value of the
population parameters. Howevzr, we can decrease thls sampling error to any desired
value by conducting enough simulasted tests. For our work on the Pursuit Method, a
sample of 4O tests was used in each instance.

In conducting such a simulated experiment we desire to determine, when testing
on a particular level, whether each trial is an explosion or non-explosion. Clearly
we could accomplish this by having, for thls level, a box containing black and white
balls in the proper proportions and then drawing the balls from the box in a random
fashion. A white ball would represent an explosion and a black ball would represent
a non-explosion. As in the other portions of this report, the correct proportions
of balls for each level would be determined from the cumulative normsl curve (see
Figure 1). Another method uses some results of such experiments that have been
tabulated in Sankhys (the Indian Journal of Statistiecs), Vol. I, pp. %03-328, and we
can refer directly to these tables. These tables are of random numbers (drawn from
a normal distribution).

In order to illustrate the use of these tables, we ghall conduc® one teat, con-
gisting cf 20 trials, for the determination of the 10 per ceut point. 1et us sup-

+ 3 T x * - H - ~
ose that testing 1s telng decre on levels -2.2, -:2.%,




s given below:

133,

+0.157
~0.615
+0.1736
+1.163%°
+0.371
-0,.316
-0.3%36
+0.556
+0.399
+0.568
+0.787
-0.705
+0.367
+0.120
+1.723
+2,616
+0.725
+0.021
-0.4%5
+1.105%

Our only rule of procedure in using these values is that if testing is being done on

level x, then s value from the table less than X represents an explosion In thils

trlal and one grester than x represents a non-explogion. This is equivalent to the

assumption that the relation betwesn per cent explosions and level of severity can

be represented by & cumulative mnormal curve. Now following the rules given in

Section 14, we obtain the followling results for our sample of 20:

Results of an Experimental Test

S W OO v O

0

X

with the Pursult Method

repregents a non-explosion

repregents an explosion

ar




13k,

We see that the per cent explosions on level -0.%5 1s 12 and on level -1.0 isg o.
Congequently, using linear Interpolation, the level corresponding to the 10 per
cent point is -0.5 + (.16} (-0.5) = -.58.

We can now repesat this as msny times as desired, obtaining an estimate of the

10 per cent point each time, and then calculate the mean and the variance of this
eatimate from this sample of values.
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